
A Tour of WebAuthn
Adam Langley

2024-12-23

Apart from the use of the Whisper medium model to transcribe dictation, and
OpenAI’s o1-preview model to proofread, no AI tools were used in the creation
of this work.

The cover image is View of a Villa, by Lancelot-Théodore Turpin de Crissé. Part
of the collection of the National Gallery of Art.

The book is typeset with Typst in Libertinus Serif and Roboto Mono.

Contents

1 Introduction ... 4
2 Universal Second Factor .. 9
3 FIDO2 and passkeys ... 20
4 WebAuthn .. 25
5 Relying party IDs .. 44
6 CTAP2 ... 50
7 Attestation .. 58
8 WebAuthn on the web ... 67
9 Extensions .. 74
10 Hybrid transport ... 86
11 Platform APIs .. 91
12 The server side .. 102
13 Public key formats ... 110
14 Index .. 113

3

CHAPTER 1

Introduction

Passwords are rubbish.

If you’re reading this book then hopefully you’re already on board with this idea,
but let’s recap anyway.

The typical practice with passwords is to remember a few different ones and re-
use them widely. (Password managers support generating random passwords, but
people mostly don’t.) Sites must store hashes of these passwords to recognize them,
but most passwords have too little entropy to resist brute-forcing when the hashes
leak. (The website haveibeenpwned.com now has records of about 13.5 billion ac-
counts that have been found in account database leaks from nearly 800 websites.)

When a password database leaks, not only can any successfully cracked passwords
be used immediately to sign in to that site but, because of password re-use, those
users’ accounts on other sites may also be compromised.

Next, because users typically remember their passwords, they can be tricked into
entering them on lookalike websites. These “phishing” attacks are common, effec-
tive, and can have global implications when used to interfere in elections1.

Lastly, passwords can leak from many other parts of the software stack. Facebook
inadvertently logged2 hundreds of millions of passwords over many years, and
Javascript-injection attacks3 can exfiltrate anything entered on a site, including
passwords.

This book is about using public key signature schemes to try and build a better sys-
tem of authentication. These schemes have names like ECDSA, RSA, and ML-DSA.
They vary in how large their outputs are, how fast they operate, and whether they’re
resistant to (still theoretical) large quantum computers. In this book we’ll consider
them only in the abstract—the construction of public key signature schemes is a
deep and fascinating topic, but we will cover none of it here.

In the abstract, a public key signature scheme provides three operations:

1. A generate operation takes some random bits and returns two byte strings that
we will call a public key and a private key.

2. A sign operation that takes a private key and an arbitrary byte string (called the
“message”), and produces another byte string that we will call a “signature”.

4 IN TRODUCTION

3. A verify operation that takes a public key, a message, and a claimed signature,
and returns whether that signature was generated by the sign operation with
the corresponding private key.

The names of these operations have obviously been chosen to suggest analogs in
the real world, but that is a double-edged sword. These are not handwritten marks
on a piece of paper; they are only defined by the operations above. For example,
there can be multiple valid “signature” values by a public key for a given message.
But while these subtleties are important in some contexts, like cryptocurrencies,
they aren’t for us.

To be useful, a public key signature scheme must have properties like the following:

1. It’s not possible to compute the private key from the public key.
2. It’s not possible to compute a signature without the private key.

Those properties are vaguely defined. (Indeed, the second implies the first.) Readers
are welcome to research the formal definition of security (“EUF-CMA”) to better
understand the topic, but a rough understanding is all you need in this context.

Let’s sketch out a toy example of an authentication scheme using public key sig-
natures.

In this sketch, rather than registering with a website by creating a username and
password, people will create a username and then their computer will run the
generate operation, record the private key, and submit the public key and username
to the site.

In order to sign in, people will enter their username. Then their computer will run
the sign operation with their private key on the message “let me in”. It’ll send the
username and signature to the website. Lastly, the website uses the public key that
it recorded when the user signed up, and runs the verify operation on that, the
message “let me in”, and the submitted signature. If the signature is valid then the
user is signed in.

We have immediately solved the problem of database leaks because now websites
only need to record public keys, not password hashes. A public key can’t be used to
generate a signature, only validate one. So, unlike passwords, when they leak, they
can’t be used to sign in to that site (or any other).

But we haven’t solved the phishing problem because people might submit a signa-
ture value to the wrong site. Also, if an attacker learns a single signature value,
they can use it to sign in as the user. Lastly, we breezed over where private keys are
stored and how many there are.

IN TRODUCTION 5

Don’t worry, we’ll solve all of those issues with more realistic designs. Firstly, let’s
deal with phishing.

Phishing involves an attacker proxying a user’s sign-in information. The victim
mistakenly signs in to a fake website, and then that information can be reused with
the real website. The toy scheme above was vulnerable to phishing because the
message, “let me in”, was the same for all sites and so a signature was valid every-
where.

So our first design tweak is to change the signed message to name the intended
destination. Let’s start using JSON for the message too.

Now, when a user signs in, their computer runs the sign operation with the pri-
vate key. But rather than using the message “let me in”, we’ll make it {"origin":
"https:∕∕example.com"}. The site needs to run the verify operation on the result-
ing signature, and the verify operation requires the message as an input, so we’ll
also have the user’s computer send the message along with the signature and user-
name.

Now consider what happens when the user clicks a malicious link and tries to sign
in to exampl3.com (an evil phishing website). The user’s computer will sign the
message {"origin": "https:∕∕exampl3.com"}. When the phishing site proxies the
sign-in details to the real website, the signature will be valid, but the real website
can notice that the user was attempting to sign in to a different website and reject
it. (Computers, unlike humans, can reliably notice single-character differences in
URLs.)

The phishing site can’t change the message because the real site will reject the sig-
nature when verify checks it, and they can’t update the signature because they
don’t have the private key.

So phishing has been solved with a small tweak, but we’re still left with the problem
that if a signature value for the real site leaks then that can be used to sign in as a
user. While, unlike password hashes, signature values don’t need to be stored, we’ve
seen that similar values can be exfiltrated via Javascript-injection and inadvertent
logging.

To solve phishing, we made the message specific to a given site. To solve this prob-
lem, we’ll make the message specific to an authentication attempt.

So our next tweak to the design will be that, when a user tries to sign in, the site
will send a large random challenge to the user’s computer, to be included in the
signed message. Each time a user attempts to sign in, the random challenge will be
different (with extremely high probability).

6 IN TRODUCTION

So a signed message will now look like this: {"origin": "https:∕∕example.com",
"challenge": "8065afbaa4faee78123ad2061bc78df3"}.

Now if a signature gets logged or exfiltrated by malicious JavaScript, it quickly be-
comes useless. A signature is only valid for a specific message, but the challenge
(and thus the message) will be different in the future.

We still need to consider how many public keys a person has and where they are
stored.

A simple answer would be that each person has a single public key and uses it
across all sites and apps, but the obvious problem with that is that it is a unique
tracking value for that person, and people don’t want to be linked across all their
sites and apps.

For now, we will say that each website or app gets its own set of keys. Things are
more complicated than this in practice, but we will cover these complexities in fu-
ture chapters.

Unlike a password, the value of a private key never needs to be sent anywhere to
be used. So for maximum security, we’ll start by generating and keeping private
keys in dedicated hardware, usually connected via USB. This hardware can be de-
signed to be resistant even to a degree of physical attack. Later in the book we’ll
see how this can be relaxed so that these authentication schemes can be usable in
a consumer context.

The next chapter will dive into the concrete and cover the nitty-gritty of the first
implementation of this design, but we should keep in mind the limits of any au-
thentication system:

In a digital context, people are always acting through their computer. While we talk
about authenticating a user, the thing that directly gains authority as a result of au-
thenticating is that user’s computer. So if that computer is controlled by an attacker,
the authentication system is moot. Tackling the authentication problem does not
solve all security issues, but many security issues are authentication problems, so
better authentication systems are necessary part of fixing the world.

WebAuthn, the subject of this book, is such a system.

7

1 www.nytimes.com 2 krebsonsecurity.com 3 arstechnica.com

8 UNIVERSAL SECOND FACTOR

CHAPTER 2

Universal Second Factor

The first embodiment of the broad design that we sketched out in the previous
chapter was the Universal Second Factor (U2F) system from the FIDO Alliance. The
FIDO Alliance is a consortium of companies, all of whom care about the problems
of online authentication, and they developed a pair of standards to try and solve
phishing by adding a public-key authentication system as a second factor to sign-
ins. (I.e. in addition to a password.)

The first of these standards, called CTAP11, defines a protocol between computers
and dedicated devices called security keys that perform the generate and sign op-
erations. The second defines a Javascript API so that websites can make use of them.

At this point, the U2F Javascript API is thoroughly obsolete and is not worth cov-
ering even for historical reasons. But millions of U2F security keys were produced
over the years and, while security keys now use the more modern CTAP2 proto-
col, CTAP1 is very simple, is still supported, and is worth understanding because
it contains the core elements of everything that follows. So we’ll discuss CTAP1 in
some detail in this chapter.

CTAP1
CTAP1 only includes two commands: one that implements the generate operation
and another that implements sign. To cause a CTAP1 security key to run generate,
a computer sends a command consisting of the following bytes, concatenated to-
gether: (There’s quite a long list of fields here, but don’t worry. Each will be ex-
plained.)

1. A byte with value 0.
2. A byte with value 1—the command code for generate.
3. A flags byte with two flags set: 0x1 for “user presence required” and 0x2 for “user

presence consumed”.
4. Another zero byte.
5. The length of the following data as a 24-bit, big-endian value. This is always 64.
6. The SHA-256 hash of the “client data”.
7. The SHA-256 hash of the “relying party ID”.
8. Two zero bytes which indicate that the maximum response length is supported.

(This message format comes from a smart card format called an application proto-
col data unit or APDU. This chapter will include the needed details without further
reference to APDUs.)

UNIVERSAL SECOND FACTOR 9

The response consists of the following, concatenated together:

1. A byte with value 5.
2. A public key (X9.62 encoded P-256, see chapter 13. U2F only supports ECDSA

with P-256).
3. An 8-bit credential ID length.
4. The credential ID.
5. A certificate (X.509 DER encoded).
6. A signature.

The number of values going back and forth should be somewhat surprising in light
of the previous chapter. There, the generate operation was defined as requiring
random bits as the sole input, and as producing a private key (which we expect the
security key to store) plus a public key (which it should report to the computer).
In U2F, the random bits come from within the security key so there are two unex-
pected inputs (“client data” and “relying party ID”) and three unexpected outputs
(the credential ID, a certificate, and a signature).

An ID is the most obvious addition: we need some way to refer to the generated
keys. Credential IDs are generated by security keys for that purpose and can be as-
sumed to be globally unique because they must be at least 16 bytes long and contain
at least 100 bits of entropy. Given that the ID length in the response is only eight
bits, a U2F credential ID is, at most, 255 bytes long.

We have already mentioned that we want to avoid reusing public keys too widely
for privacy reasons. Thus, to stop sites from sharing public keys and tracking users
with them, U2F allows an arbitrary value called the relying party ID (RP ID) to be
associated with each public key. (A relying party is any entity that does authentica-
tion, i.e. a website in the examples that we’ve been using.) The same relying party ID
must be sent whenever the sign operation is invoked, therefore public keys cannot
be used outside the context in which they were intended.

Typically, an RP ID is a domain name, like example.com. So even if anothersite.com
knows the ID for an example.com credential, it can’t use it because the browser will
specify that the RP ID is anothersite.com at signing time, and so the security key
will reject the request. (See chapter 5 for more about RP IDs.)

The security key checks the RP ID, and not the browser, because security keys are
assumed to move with the user, between different computers. So a browser on a
specific computer or phone might not have been involved in creating the credential
that is now being used.

User presence
The term “user presence” appears in the description of the request flags. This refers

10 UNIVERSAL SECOND FACTOR

to the idea that an operation should only be performed when a human physically
touches the security key.

Most security keys will have a capacitive sensor: a metal band or disc that can rec-
ognize a touch by the change in capacitance it causes. Requiring user presence (a
physical touch) for each operation stops any malware on the computer from mak-
ing requests to the security key in the background.

Since security keys typically don’t have screens, when users touch them they don’t
know what operation is being requested and have to trust that the computer is re-
questing a legitimate operation. So the benefit of requiring user presence is modest.
But the principle of requiring a user interaction for every operation has become a
core part of the WebAuthn ecosystem that developed from U2F, and thus of every-
thing covered in this book.

U2F splits the concept into “user presence required” and “user presence consumed”.
The former requires that the security key have been recently touched and the lat-
ter resets that flag. But this split didn’t survive into later versions of the standards
which instead specify when the flag is reset rather than deferring to the request.

Attestation
To explain the remaining values, we’ll have to briefly cover the topic of attestation.

Suppose you’re a company worried about the security of your employees signing in
to your corporate systems. In that case, you may want the private keys that they’re
using to do so to be stored in a specific type of security key. (Probably the type of
security key you issued them for this purpose.) You may even want to ensure that
the security key they use is the specific one that was inventory-tracked from the
factory and assigned to them.

Attestation is designed to solve these problems.

The concept is that the security key has a private key installed in the factory. This
private key is not used for signing in, but rather to prove that future generate op-
erations were performed in a known model of security key, or in a specific security
key.

The “client data” hash, and the certificate and signature outputs, are all part of this
process. They are covered in detail in chapter 7, but most uses of security keys don’t
deal with attestation, and so we’ll ignore these fields for now.

Invoking the generate operation
The easiest way to trigger a generate operation is in a web browser. We’ll use the
following snippet of JavaScript to ask the browser to generate a public and private
key, and we’ll have the browser do that with a U2F security key so that we can
inspect the request and the response. (This will be our first example of using the

UNIVERSAL SECOND FACTOR 11

WebAuthn Javascript API, which will be covered extensively in chapter 4. We could
also have used the APIs on Android or iOS, which are covered in chapter 11.)

navigator.credentials.create({
 publicKey: {
 ∕∕ Unused in this example.
 challenge: new Uint8Array([0]).buffer,
 ∕∕ Boilerplate required values.
 pubKeyCredParams: [{
 type: "public-key",
 alg: -7,
 }],
 ∕∕ The relying party ID.
 rp: {name: window.location.host},
 ∕∕ Required values that are inapplicable in U2F.
 user: {
 id: new Uint8Array(1),
 name: "user",
 displayName: ""
 },
 }
}).then(console.log, console.log);

Here is the message sent by the browser, to the U2F security key, broken down into
the same parts as listed above.

And here’s the response, similarly broken down:

12 UNIVERSAL SECOND FACTOR

(Note that the UP flag was set in the request so you know that I had to touch the
security key before it would generate that response.)

Now that we have performed a generate operation, the next step is to perform a
sign operation with the private key that has just been generated.

Invoking the sign operation
Again, we’ll foreshadow future chapters by using a snippet of the WebAuthn
Javascript API to ask a browser to perform a sign operation with a U2F security key.

navigator.credentials.get({
 publicKey: {
 allowCredentials: [{
 type: 'public-key',
 transports: ['usb'],
 id: hexStringToArrayBuffer(
 "a28874e5d0e17b6796ed14b60447278a" +
 "c544e6b8dec18e54ccb178afb797e21e" +
 "e54a0cf264741b6cf4f8f89f41d12fff" +
 "18aafeff82ee318225c5339fd3fedb2a"),
 }],
 challenge: new Uint8Array([0,1,2,3,4,5,6,7,
 8,9,10,11,12,13,14,15]).buffer,
 },
}).then(console.log, console.log);

Note the appearance of the credential ID from the previous response in this request,
so that the security key knows which private key to sign with.

The request format is an APDU again and so follows a similar structure. This time
we’ll dive directly into the concrete request that the browser sent and explain the
structure as we go:

• 00 (all CTAP1 commands start with a zero byte)
• 02 (the command code for sign)
• 03 (a flags byte with two flags set: 0x1 for “user presence required” and 0x2 for

“user presence consumed”.)
• 00 (an unused flags byte)
• 000081 (the 24-bit length of the following data: 129 bytes)
• a438...c659 (the SHA-256 hash of the “client data”, described below.)
• a379...1947 (the SHA-256 hash of the relying party ID, example.com. Note that

this is the same value that was sent when generating the credential, otherwise
the request would be rejected.)

• 40 (the length of the credential ID; 64 bytes.)
• a288...db2a (the credential ID. The same value that was returned from the
generate operation, and given in the Javascript request to the browser.)

• 0000 (indicating that the maximum response length is supported).

UNIVERSAL SECOND FACTOR 13

The response to a sign request is the simplest message so far:

• 01 (a flags byte with one flag set: 0x01 for “user presence"—covered later)
• 00000004 (a 32-bit signature counter, also covered later)
• 3045...0e2d (the signature itself).

Recall that, in the previous chapter, we considered a series of shapes for the signed
message. Firstly, we tried using a constant value (“let me in”). Next we realized that
the message should include the site’s origin to prevent phishing, so it became a
JSON object: {"origin": "https:∕∕example.com"}. Then we realized that it should
contain a random challenge value from the site to make it unique to an authenti-
cation attempt. This JSON is called the client data because it comes from the client
(i.e. computer), rather than from the security key. It’s hashed and combined with
the authenticator data (which comes from the security key) to form the message
that is ultimately signed.

The client data generated by a modern browser has evolved slightly and, for the
Javascript request above, looks like this: (With whitespace and line breaks added
for clarity.)

{
 "type": "webauthn.get",
 "challenge": "AAECAwQFBgcICQoLDA0ODw",
 "origin": "https:∕∕example.com",
 "crossOrigin": false
}

We’ve seen the origin and challenge fields before, although note that the challenge
is encoded with base64url, rather than the more common base64 encoding. The
type field is just good security hygiene: you never want to allow ambiguity, so it’s
good to be explicit about the intended meaning of all messages. The crossOrigin
field communicates whether the authentication was done within an iframe inside
another site.

(Browsers may add more fields in the future, so always parse such JSON rather than
assuming that the challenge can be inserted into a template.)

The authenticator data is the concatenation of the following:

1. The SHA-256 of the relying party ID.
2. The flags byte from the sign response.
3. The signature counter from the sign response.

Then the signed message, i.e. the final value given to the sign operation, is the au-
thenticator data followed by the SHA-256 hash of the client data.

14 UNIVERSAL SECOND FACTOR

We now have all the pieces to implement the public-key authentication scheme
sketched out in the previous chapter:

When an account is first registered, we have a Javascript snippet that will cause
the browser to send a request to a U2F security key to generate a public and pri-
vate key. The server can store the credential ID and public key from the response
and associate them with the new account. Then, when that account tries to sign
in, the server generates a random challenge and makes a Javascript call with that
challenge and the credential ID. The browser will send a request to a U2F security
key to sign a message containing that challenge (and other values) and return the
resulting client data, authenticator data, and signature.

The server can now:

• Run the verify operation with its stored public key and the response from the
browser.

• Check that the client data’s type, origin, crossOrigin, and challenge fields are
as expected.

• Check that the authenticator data is well-structured and contains the expected
relying party ID, and that the flags byte has “user presence” set.

This is still a simplistic example and there are more steps in a full implementation.
(For example, unless the user provides a password as well then it would be possible
to take a security key from someone’s desk and sign in as them!) But you can now
see the core ideas in action, all the way from a server, through a browser, to concrete
messages sent over USB to a security key.

Statelessness
Nearly all U2F security keys are designed in a manner that avoids the need to actu-
ally store the private keys, thus they can generate an unlimited number of creden-
tials with only a constant amount of onboard storage. The exact details are private
to the security key but go something like this:

Either at the factory or on first use, the security key will generate and store a ran-
dom symmetric key. We’ll call this the “root secret”. Then, when the security key is
asked to generate a public and private key, it chooses a random seed value and en-
crypts it with the root secret. Next, it authenticates the encrypted seed, along with
the hash of the relying party ID and any other pertinent values, using an algorithm
like HMAC.

Together, the encrypted seed and the HMAC form the credential ID. Then the secu-
rity key generates a public key and private key from the seed, discards the private
key, and returns the credential ID and public key to the computer.

UNIVERSAL SECOND FACTOR 15

When asked to do a sign operation, the security key splits the credential ID into
an encrypted seed and an HMAC value. It checks whether the HMAC is correct for
the relying party ID hash and the encrypted seed. If not, then either this credential
ID came from a different security key or the relying party ID is incorrect. In either
case, it returns an error.

But, if the HMAC is correct, it decrypts the seed using its root secret and can then
derive the same private key as it did before. Then it performs the sign operation
with that private key and returns the resulting signature.

At no point did the security key need to store anything other than the root secret,
and there is only a single root secret for all credentials, so the storage requirements
are constant. The state necessary for a credential is kept in the credential ID, and
that is stored on the server.

There are a couple of consequences of this style of design:

First, a credential can never be used without knowing the credential ID. In chapter
3 we’ll discuss “discoverable” credentials that change this assumption but, in U2F,
a credential ID is always needed.

Second, there’s no way to delete an individual credential from a security key be-
cause the credential isn’t stored on the security key, it’s “stored” in the ID, on
the server. Instead, U2F security keys will typically support a reset command that
generates a fresh root secret. Once the root secret has been changed, all previous
credential IDs are invalidated and will appear to be IDs generated by a different
security key.

In U2F this reset functionality, if it exists for a particular model of security key, is a
vendor-specific command. It gets standardized in CTAP2, see page 56.

Signature counters
The rest of this chapter contains details that can be skipped on a first reading.

The last unexplained field is the “signature counter” that is returned from sign op-
erations. In the example above, it was four, but that doesn’t mean that I discarded
three responses while trying to capture that example.

Signature counters are optional for the security key to implement, although the
majority of them do. If there’s no counter then the value in the response is always
zero. But once a security key has produced a non-zero value then it has to ensure
that the counter, for all future signatures from that credential, strictly increases.

The motivation for having a counter is that it might allow websites to detect when a
security key has been cloned. Cloning a security key is supposed to be very difficult
but, if you assume someone managed to do it (probably destroying it in the process),

16 UNIVERSAL SECOND FACTOR

then one could create a working replica which could be slipped back into the pos-
session of the legitimate user, leaving them unaware that anything has happened.
At this point the attacker, who presumably also created a replica for themselves,
can create signatures as easily as the legitimate user.

If all that has happened, then the signature counter might uncover it. Unless the
attacker can know exactly when the legitimate user has used their security key,
and thus incremented the counter, then eventually either they or the real user will
create a signature where the counter didn’t increase.

If the website noticed this, it could sound the alarm. At a minimum, the security
key in question should be replaced. Ideally, the account and security key would be
investigated carefully for signs of compromise.

This is a rather far-fetched scenario. Generally, when signature counters are
checked by a site, any error is treated as a transient authentication failure. But
that defeats the point: the user or attacker will simply try again after the signature
counter has naturally incremented, and then it’ll work. The user will simply come
to think of their security key as a bit worn out and will learn that sometimes it
requires a couple of attempts to work.

On the other hand, many security keys only have a single, global signature counter,
and this allows different websites to correlate the use of the same security key be-
tween them. That is, the current counter value of your security key is somewhat
identifying and can be combined with information about how often it increases.
(Better security keys will implement more granular signature counters.)

Signature counters are also incompatible with syncing private keys between com-
puters (see chapter 3) and thus are not implemented in an increasing fraction of
cases.

So signature counters might be useful in the most extreme cases if carefully imple-
mented and coupled with a robust incident response process, but they can other-
wise be ignored.

Platform behavior
The computers (or phones) that security keys are used with are called platforms and
U2F is a bit more complex for platforms than suggested in the sketch above. There
can be multiple security keys plugged into a laptop, and a WebAuthn request can
list many credential IDs. The browser has to find the right credential ID for the right
security key.

Also, U2F was designed so that security keys could be implemented in a Java-based
framework that did not allow requests to block. But requests cannot complete until
user-presence is satisfied, i.e. until someone touches the sensor on the security key.

UNIVERSAL SECOND FACTOR 17

These factors mean that browsers have to poll U2F security keys. Two protocol fea-
tures facilitate this:

First, whenever an operation cannot be completed because the security key is wait-
ing for a touch, the request will immediately result in a special error code (“test of
user presence required”). The security key will usually blink an indicator for a short
while after this.

Second, the flags byte in sign requests can be set to 0x07 (“check only”). This causes
the request to always fail but with one of two distinct error codes. If the credential
ID and relying party ID hash are valid for the security key, then it returns the same
“test of user presence required” error as before. (Whether the security key has been
touched recently or not!) Otherwise it returns a different error (“bad key handle”).

Browsers combine these two features with the following algorithm for handling
U2F security keys:

For generate requests, the request is sent to all security keys. The security keys will
fail the request because they haven’t been touched, so the requests are repeated
every few hundred milliseconds until the user touches one of the security keys to
select it.

For sign requests, each credential ID is sent to each security key in “check only”
mode until either a valid credential ID is found, or until all credential IDs have been
tried with a given security key. If a valid credential ID is found for a security key
then a stream of sign requests are sent, waiting for a touch. If a security key doesn’t
recognize any IDs then either a message is displayed on the screen, or else a stream
of generate requests are sent, waiting for a touch. These generate requests are sent
just to cause the security key to blink its indicator, and to see whether the security
key is touched—any resulting public key is discarded. If the security key is touched,
an error is displayed to the user because that security key isn’t going to work.

The transport layer
A fully working spec also needs to define how security keys are discovered on the
USB bus and how the U2F messages are encoded for transmission.

Security keys advertise themselves as USB Human Interface Devices. HID devices
can advertise a number of usage pages that describe broadly what kind of device
they are. For example, usage page one covers keyboards, mice, joysticks, and other
common input devices. Security keys advertise the usage page 0xf1d0 (“FIDO”, get
it?) to identify themselves.

HID devices communicate using short report messages and FIDO defines2 how
longer messages are fragmented and reassembled so that they can be sent as a series
of reports.

18 UNIVERSAL SECOND FACTOR

To deal with the issue of multiple applications trying to talk to the same security
key at the same time, and potentially interleaving their streams of report messages,
every report starts with a channel identifier. Applications get an identifier by send-
ing a 64-bit nonce and watching for a channel allocation report from the device that
echoes that nonce.

Thus, in theory, a security key can handle multiple concurrent communication
streams with different applications on the computer. In practice, since security keys
are embedded devices, they often only support a single active channel and so an ap-
plication requesting a new channel will disable the previously active one. However,
this mechanism still allows communications to be cleanly broken off rather than
having fragments from different applications interleaved, producing unpredictable
results.

Security keys often also support communication over NFC, so that a security key
can simply be held near the top of a mobile phone to be used. While the underlying
technology and framing differs completely between USB and NFC, it is ultimately
just another way of exchanging messages and so the underlying transport can be
switched out without affecting any of the higher-level protocol.

A Bluetooth Low Energy (BLE) transport was also defined, but this requires the se-
curity key to have its own power source. The primary motivation was to use secu-
rity keys with iPhones before they had support for NFC security keys, but now that
the issue has been resolved, BLE security keys are very rarely seen. (This transport
is unrelated to the one used between computers and phones, which is covered in
chapter 10.)

1 fidoalliance.org 2 fidoalliance.org

19

CHAPTER 3

FIDO2 and passkeys

The standards described in the previous chapter are sufficient to enable the classic
2nd-factor pattern of entering a username, then a password, and then tapping a
security key. Many companies have deployed this sort of system to their employees
to very great effect. Authenticating employees with just a password in this day and
age is bordering on negligence and, unlike code-based second factors (whether de-
livered over SMS or from an app on a phone), security keys aren’t phishable.

But a password is still necessary. Otherwise, the security key alone would be suffi-
cient to authenticate, and mislaid security keys would be a significant concern.

U2F also doesn’t solve the problem of usernames. Remembering usernames is a
bother that password managers help solve today. So, if public key authentication is
going to find a broader audience, it needs to solve this too. Thus we want to be able
to ask a security key what accounts have been registered for a particular site, and
for it to store the corresponding usernames.

The U2F protocol outlined in the previous chapter cannot support this. It assumes
that the credential ID is already known before a sign operation can be performed,
and thus the account must be known before the security key can be used. Indeed,
the vast majority of U2F security keys do not store any per-credential data, as de-
scribed on page 15, and so it’s impossible for them to work with any other pattern
of interaction.

So security keys, and the protocol for communicating with them, had to evolve.
Within the FIDO Alliance this was broadly done under the umbrella term “FIDO2”,
which covered both a new security key protocol (CTAP2) and a new Javascript API
(WebAuthn), which we’ve already seen examples of.

The first major new concept in FIDO2 is discoverable credentials.

The model of discoverable credentials
Credentials on a U2F security key, which we’ll now call non-discoverable credentials,
conceptually consist of three values: the credential ID, the private key, and the rely-
ing party ID. Since U2F security keys generally don’t store any per-credential state,
they can be thought of as an infinite bucket of such credentials.

A security key that stores discoverable credentials can be thought of as a database
table. The first two columns of this table form the primary key, and those columns
are the relying party ID and the user ID. A user ID is a new concept for discoverable

20 FIDO2 AND PASSKEYS

credentials: an identifier for an account chosen by the site. It is not (and should not
be) the username, for reasons that will be explained on page 81. Instead, it is better
to think of it as the “user UUID”.

Since these two columns are a primary key, that implies that the security key stores
at most one credential for any given pair of relying party ID and user ID. So if you
create a second discoverable credential that has the same RP ID and user ID as an
existing one, then the existing one is overwritten.

The third and fourth columns of this conceptual table are familiar: the credential
ID and the private key. Discoverable credentials still have credential IDs and can be
specified by them just like non-discoverable credentials. But the crux is that it’s also
possible to ask for some credential for a given RP ID, without specifying any cre-
dential IDs. This is the key distinction between discoverable and non-discoverable
credentials, and the one that lets them act like a username as well as an authenti-
cation factor.

There are many more columns in the table. Of course there’s a username (in fact,
two), and an increasing number of extensions require more fields to be added to the
credential row. These values will be covered in chapters 4 and 9.

Since discoverable credentials require per-credential storage on a security key,
many security keys support creating both discoverable and non-discoverable cre-
dentials and have a limit on the number of discoverable credentials.

User verification
Discoverable credentials solve the problem of usernames, but we would still need
a password to avoid risks from mislaid security keys. In fact, discoverable creden-
tials make that problem even more acute: you wouldn’t even have to guess whose
security key it was, it would tell you!

U2F introduced the concept of user presence—that some human was physically
present. Coupled with discoverable credentials comes the stronger notion of user
verification—that the correct human is physically present. The mechanism for es-
tablishing this varies. Some security keys have fingerprint readers, a few security
keys have a physical PIN pad on the device, but most security keys use a PIN that
is entered on the computer.

The implied contract with the security key is that it will maintain a user verification
chain: if user verification is performed with a PIN, then that PIN may be changed,
but the old PIN has to be presented to do so. If the PIN is lost and needs to be reset,
then all the credentials must be deleted to do so. Different security keys may differ
in the details, but each should maintain such a chain of verification.

FIDO2 AND PASSKEYS 21

While the term “PIN” is used, these PINs can be alphanumeric, so you could also call
them passwords. But since FIDO2 was supposed to be replacing passwords, calling
them passwords would have been awkward, and so they were called PINs. But the
difference is more than just a name: these PINs are never sent over the network,
can never be disclosed in a database leak, and, if they’re being used with a security
key, then the security key can enforce hardware-based guess limits.

Platform authenticators
It also became apparent with U2F that many people wanted to keep their security
keys plugged into their computer all the time. In response, a form factor of security
key that mostly fits inside a USB port, and leaves only a small lump on the outside
of the computer, became quite popular.

But this was driven by more than the realization that a USB port was a useful place
to keep a security key where it wouldn’t get lost.

Malware that steals cookies is a serious concern because, no matter how strong the
initial authentication is, if malware can steal the results of that authentication, you
still have a security problem. So enterprises often ask their users to re-authenticate
with their security keys, perhaps daily. Since a hardware-bound private key cannot
be stolen by malware, this establishes that the active session is still legitimate.

But many computers already have a Trusted Platform Module1 or similar device
within them that can store a hardware-bound private key and sign with it. So why
not use those as opposed to having a security key permanently inserted? Since the
computers or phones that security keys are used with are called platforms, these
are called platform authenticators.

Traditional platform authenticators cannot help you with signing in on a different
computer, but they can provide proof that an active session hasn’t been stolen by
malware and, when coupled with user verification, they can provide evidence that
the correct human is still behind the keyboard. They are also far more common than
security keys since no extra hardware has to be purchased.

(From this point, we’ll start to use the more generic term authenticator, rather than
security key, unless specifically speaking about the latter type of device.)

WebAuthn
In the next chapter we’ll cover the Javascript API that was developed as part of
the broader FIDO2 effort in order to expose these concepts: WebAuthn. The APIs
for Android, iOS, macOS, and Windows are strongly shaped by it and, collectively,
they form the WebAuthn family of APIs. So even if you never touch Javascript, you
need to understand the core of WebAuthn. While the syntax of these different APIs
varies, they’ll generally use the same terminology, and they all produce compatible
outputs.

22 FIDO2 AND PASSKEYS

Passkeys
Since (traditional) platform authenticators can’t be used to sign in on other devices,
FIDO2 originally assumed that all users had security keys. Otherwise losing or re-
installing a laptop would leave a user without any usable credentials.

Security keys are great and should be deployed with gusto in all enterprise and
government environments that require strong authentication. But it’s unlikely that
regular people are going to adopt them and, even if they did, security keys work
much better when there’s a helpdesk that can be a backstop after the dog has chewed
on one.

If the benefits of FIDO2 are going to be enjoyed more widely, credentials are going
to have to be more usable, and that means syncing them. In this book, thus far,
there has been a firm link between a credential and a single physical device that
created and holds the private key. That device might be a security key, or it might be
a platform authenticator, but either way you can point to where the private key is
stored and it never moves. Syncing changes that, in good ways (people can recover
from losing a device), and bad (a sync account could be compromised).

Wider deployment also needs to avoid overly technical terms; “WebAuthn creden-
tial” doesn’t sound very friendly. Thus the term passkey was invented by Apple, but
they nicely let everyone use it.

A passkey is a synced, discoverable WebAuthn credential. Or, when that’s awkward,
sometimes it’s just a discoverable credential. But this book will stick to the former
definition. In general, passkeys are an attempt to take WebAuthn outside the en-
terprise.

The passkey ecosystem consists of providers, provider APIs, passkey APIs, and the
hybrid transport. We’ll cover the hybrid transport in chapter 10. It’s the fallback for
when syncing doesn’t bring a passkey to where you need it: you can pull out your
phone, scan a QR code, and send a signature to a computer.

Passkey providers are services that store and sync passkeys (which are, remem-
ber, just another name for discoverable WebAuthn credentials). Within the Apple
ecosystem, iCloud Keychain is the most common provider. On Android, you’ll com-
monly find Google Password Manager or Samsung Pass. Most other password man-
agers are also passkey providers, such as 1Password, Dashlane, and Bitwarden.

Provider APIs are the way that passkey providers register with an operating system.
We won’t be covering these APIs in detail in this book, but the Apple platforms and
Android both provide APIs where providers can register. Then providers can offer
passkeys to applications that want them.

FIDO2 AND PASSKEYS 23

The flip side of the provider APIs are the passkey APIs. These are covered in detail
in chapter 11. They provide applications with access to registered providers so that
they can request that passkeys be created, and can request signatures from them.
These APIs are all based on the original FIDO2 API: WebAuthn.

When credentials are synced, the sync account (rather than a device) is considered
to be the authenticator. So when the model of discoverable credentials says that only
one credential with a given pair of RP ID and user ID exists within an authenticator,
that applies to the sync account, not to each individual device that is syncing.

For example, if a credential is created in iCloud Keychain on a Mac for a given site
and user ID, and then another credential is created on an iPhone, signed into the
same iCloud account, with matching RP ID and user ID values, then the latter will
overwrite the former because the sync account is the same, and the invariant ap-
plies to the whole account.

1 en.wikipedia.org

24

CHAPTER 4

WebAuthn

WebAuthn (short for “Web Authentication”) is a web API that lets a site interact
with U2F-era security keys (see chapter 2), but also take advantage of all the new
concepts in FIDO2, as outlined in the previous chapter.

The data formats and structures in WebAuthn are also strongly reflected in the plat-
form APIs that exist for apps running on the Apple family of platforms, on Android,
and on Windows. So even non-Web developers will need to understand the con-
cepts from this chapter.

Patterns in WebAuthn
WebAuthn is integrated with the W3C Credential Manager API1, which lives in the
navigator.credentials namespace. You don’t need to know this API to use Web -
Authn and it’s not covered here. But you’ll notice that the APIs are structured to
support other credential types too. That’s not an accident: both passwords and fed-
erated credentials can be used via Credential Management.

Creating a credential
Creating a credential looks like this:

const promise = navigator.credentials.create({
 publicKey: creationOptions,
});

The resulting promise either resolves with a representation of the newly created
credential, or else an error. But first we’ll look in detail at the options that control
what is created and where it’ll be stored.

The creationOptions above is a PublicKeyCredentialCreationOptions2 dictio-
nary and it contains the following members:

dictionary PublicKeyCredentialCreationOptions {
 ∕∕ Selecting the public key signature scheme to use.
 required sequence<PublicKeyCredentialParameters> pubKeyCredParams;

 ∕∕ Controlling the location and type of the new credential.
 AuthenticatorSelectionCriteria authenticatorSelection;
 sequence<PublicKeyCredentialDescriptor> excludeCredentials = [];

 ∕∕ Metadata stored with the credential.
 required PublicKeyCredentialRpEntity rp;
 required PublicKeyCredentialUserEntity user;

WEBAU THN 25

 ∕∕ Guiding the UI.
 unsigned long timeout;
 sequence<DOMString> hints = [];

 ∕∕ Extension features, covered in a later chapter.
 AuthenticationExtensionsClientInputs extensions;

 ∕∕ Fields related to attestation; covered in a later chapter
 required BufferSource challenge;
 DOMString attestation = "none";
 sequence<DOMString> attestationFormats = [];
};

Selecting a signature scheme
Signature schemes are identified by integers assigned by the IETF’s COSE group. A
site specifies the set of schemes that it accepts (in preference order) by listing them
in pubKeyCredParams. Since the values assigned by the COSE group leave some
parameters unspecified, WebAuthn additionally defines those parameters for the
common schemes.

ECDSA with P-256 and SHA-256 is the dominant scheme, by far, in the WebAuthn
ecosystem. (If you recall from chapter 2, it’s the only scheme that was supported in
U2F.) It has been given identifier −7. (Yes, a negative number.)

Many PCs have a TPM3 that only supports the older RSA PKCS#1 v1.5 standard
and so, to be compatible with them, sites are advised to support that scheme too.
RSA PKCS#1 v1.5 uses the identifier −257 and also specifies SHA-256 as the hash
function.

So most sites should set pubKeyCredParams to the following:

[{type: "public-key", alg: -7}, {type: "public-key", alg: -257}]

Some other, less common schemes are −8 for Ed25519 and −35 for ECDSA with
P-384 and SHA-384. Ed25519 is superior to ECDSA P-256 but the difference is of-
ten not sufficient to outweigh how common ECDSA is. ECDSA with P-384 can be
used in order to meet certain regulatory requirements4 but, given that the primary
risks are implementation issues, it is likely less secure in practice. In the future ML-
DSA (previously called Dilithium) is likely to replace ECDSA due to concerns about
quantum attacks, but that transition is still some years in the future.

Controlling the location and type of the new credential
The authenticatorSelection field is, itself, another dictionary with the following
fields:

dictionary AuthenticatorSelectionCriteria {
 ∕∕ Controlling whether the credential is discoverable.
 DOMString residentKey;

26 WEBAU THN

 boolean requireResidentKey = false;

 ∕∕ Controlling whether user verification is performed.
 DOMString userVerification = "preferred";

 ∕∕ Controlling which types of authenticators can store the
 ∕∕ credential.
 DOMString authenticatorAttachment;
};

The first two fields control whether the credential must be discoverable. But why
are there two of them, and why are they named “resident”, not “discoverable”?

Historically, discoverable credentials were first called resident credentials so this
term will pop up in several places in the protocol. It is inaccurate, however. Resi-
dent credentials are those where the authenticator keeps state about the credential.
Discoverable credentials are always resident, but non-discoverable credentials can
be resident too. The important point is whether the credential follows the model
of discoverable credentials and can be used without knowing the credential ID, not
whether the authenticator operates statelessly.

So, despite the naming, these fields control whether the credential must be discov-
erable.

requireResidentKey was defined first but is just a boolean. In order to allow sites
to express that they prefer, but do not require, a discoverable credential it was nec-
essary to add a second field, residentKey. A site must pick one of the following
scenarios in order to set these two fields:

1. If the site will always use the credential in the 2nd-factor pattern, i.e. the U2F
style where credential IDs will always be provided when requesting a signature,
set requireResidentKey to false. (The resulting credential may still be discover-
able, but discoverable credentials work perfectly well with credential IDs. This
is the default if neither field is set.)

2. If the site will use the credential without first collecting a username, thus no
credential IDs can be given, then set requireResidentKey to true. The result-
ing credential will be discoverable. (But will still work when credential IDs are
given.)

3. If the site will take advantage of discoverable credentials when possible, but
also supports using credentials in a 2nd-factor flow with credential IDs, then set
residentKey to "preferred". (It’s possible to optionally take advantage of dis-
coverable credentials with conditional UI, see chapter 8.) Whether the credential
is known to be discoverable is reported via the credProps extension (see page
75).

WEBAU THN 27

Note that there’s no way to require a non-discoverable credential. Created creden-
tials can always be discoverable and these controls only allow a site to insist that
they must be.

User verification
See page 21 for a discussion of the concept of user verification. The
userVerification field can be set to one of the strings discouraged, preferred, or
required, and the default is preferred. Creating a credential with user verification
ensures that the capability will be available when getting a signature. It also marks
the start of a user verification chain: each future signature from the credential with
the UV flag set must have collected some proof of user verification, and that proof
must chain back to the proof collected at creation time. For example, if user verifi-
cation is established with a PIN, then changing that PIN must require the old PIN.
If a fingerprint is used, then enrolling a new fingerprint must require an old finger-
print or PIN, etc.

As with residentKey, setting userVerification to preferred means that the site
would make use of user verification if performed, but will accept a credential with-
out it. But how “preferred” is it? For example, should a PIN be set up on a security
key in order to create a credential with user verification, or should a PIN only be
used if it happens to already be set up? That’s up to the platform. Windows tends
towards a stronger interpretation of “preferred” than other platforms and will, in-
deed, set up a PIN on a security key in response to a request that prefers user ver-
ification.

When it comes to platform authenticators and passkeys, the interpretation of the
userVerification value varies by provider, and might change over time. Here are
the cases when user verification will be performed today, for three common passkey
providers:

iCloud Keychain

Discour-
aged

Preferred Required

Biometrics available ✓ ✓ ✓

Biometrics not available ✓

28 WEBAU THN

Google password manager (desktop)

Discour-
aged

Preferred Required

Biometrics available ✓ ✓

Biometrics not available ✓

Windows Hello

Discour-
aged

Preferred Required

Biometrics available ✓ ✓ ✓

Biometrics not available ✓ ✓ ✓

For simple sites, the presence or absence of user verification will often make no
difference: if the WebAuthn signature is valid, the user is signed in and, if not,
they aren’t. If user verification makes no difference, the parameter should be set
to discouraged.

More complex sites might base the sign-in decision on a risk analysis, or might
subject sign-ins without user verification to additional challenges. In this case, the
parameter should be set to preferred since doing user verification has value to the
user.

Some sites might decide to only ever accept sign-ins that include user verification.
In this case, set the parameter to required.

Applicable authenticators
The authenticatorAttachment field can be left undefined, set to platform, or set to
cross-platform. This controls which types of authenticators can be used.

Setting this to platform means that no external authenticators can be used. So se-
curity keys and external mobile devices are not applicable. For example, if a site
offers to register “this computer” in its UI then it might set this field to platform.
The resulting platform UI will skip or remove other options.

Setting this to cross-platform means that only authenticators that can be moved
between devices are applicable. I.e. security keys and external mobile devices. If
a company website knows that users have been issued security keys to use with
company resources, it might set this to cross-platform.

WEBAU THN 29

Leaving this field undefined, the default, permits all authenticators, but the platform
UI will generally default to a platform authenticator if available. If a site offers to
register a passkey in its account settings, it might thus leave this value undefined.

Excluded credentials
Another way in which applicable authenticators can be controlled is by setting
excludeCredentials in the top-level dictionary. This should contain the credential
IDs of all currently known credentials for the user. It communicates that those cre-
dentials should not be overwritten, and that any external authenticator with one of
those credentials should not be registered again.

Consider a user who is attempting to register a second security key on an account
that uses the 2nd-factor flow. Their security key will likely create a stateless, non-
discoverable credential and thus no existing credential can be overwritten. But it’s
completely useless to register two credentials on the same security key: two cre-
dentials will appear in the user’s account, but there’s only a single security key that
contains them both. It would be confusing.

By listing all existing credential IDs in excludeCredentials, the site can instruct
the platform to forbid an existing security key to be registered. If the user tries to
do so, they should see an error message and the platform will usually allow them
to try again with a different security key.

Next, consider a platform authenticator that always creates discoverable creden-
tials. Recall that the model of discoverable credentials only allows at most one cre-
dential with a given RP ID and user ID to exist in an authenticator. So, if the user
were to register a second credential it would overwrite the first. There would be
two credentials listed on the site, but one would no longer exist in the platform
authenticator. This would also be confusing for the user.

In the case of a platform authenticator, however, the platform will do something
different if a credential in excludeCredentials already exists. The creation process
will appear to succeed from the point of view of the user, but the platform will
return InvalidStateError to the website. This special error code is unique to this
situation and the website can choose to show an error. (E.g. “You’ve already regis-
tered this computer”.) The site can also choose to ignore this error: the user wanted
the platform registered as an authenticator and it already is; no need to complicate
things with an error message.

Note that the excludeCredentials field is not just a list of credential IDs. It’s writ-
ten like this:

[
 {type: "public-key", id: ∕* credential ID in ArrayBuffer *∕},

30 WEBAU THN

 ∕* more such elements ... *∕
]

There is no type other than “public-key"—that’s extensibility that was never used.
The id is binary and binary values in WebAuthn, of which there are a lot, are passed
in ArrayBuffer and BufferSource objects. This is awkward because these objects
don’t convert to/from JSON automatically. There is light on the horizon in the form
of native JSON support in WebAuthn (see page 71) but this cannot be relied on to
be present in current browsers. So for now, when receiving messages from a server
to make WebAuthn calls, any binary data has to be handled specially.

Metadata stored with the credential.
The rp (relying party) and user fields in the top-level options dictionary contain
metadata that is stored with the credential. The rp field has this structure:

dictionary PublicKeyCredentialRpEntity {
 DOMString id;
 required DOMString name;
};

This id field specifies the relying party ID. This topic is complex enough that it’s
covered separately in chapter 5. If omitted, it defaults to the domain of the current
origin.

The name field is required, but currently never used. It was intended to be a human-
friendly name for the site, e.g. “ACME Corporation”. If there’s no obvious value to
use, just pass the empty string as this field will probably be unused forever.

The user dictionary looks like this:

dictionary PublicKeyCredentialUserEntity {
 required BufferSource id;
 required DOMString name;
 required DOMString displayName;
};

The id field here is the user ID. Recall from the discussion of the discoverable cre-
dential model that an authenticator stores at most one credential with a given pair
of RP ID and user ID values. The user ID is not the username and users will never
see this value. It is an opaque, binary identifier for an account that can be up to 64
bytes long. However, since the user ID is treated as less sensitive than a username
by security keys, it should not be equal to the username. It cannot be empty either.
It’s recommended to be a large random value (e.g. a UUID) that is stored by the site
for each account.

WEBAU THN 31

(In this book we’ll always call this value the user ID. But it’s also sometimes called
the “user handle”, including in the WebAuthn API later on! These are two names
for the same thing.)

The name field is the username. This is a human-readable string that usually uniquely
identifies an account. It might be an email address. This value will be displayed in
account selectors and management UIs so the user can understand which account
a credential corresponds to.

The displayName field is for a more “friendly” name for the account. For example,
a site may require an account to have a unique username, but allow users to con-
figure a (potentially non-unique) name that they will appear as on the site. That
second name would appear in this field. This field cannot be omitted but, if there is
no obvious value to put in it, set it to the empty string.

Unlike the username, the display name is not always shown in account selectors
and management UI, depending on the platform. Apple’s platforms, for example,
do not show display names.

Controlling the platform UI
The platform will show UI to help guide the user in creating the requested creden-
tial and there are a couple of ways in which the UI can be guided.

Firstly, there’s the timeout parameter. If a site will reject a credential that took
too long to create (because it’s concerned that the user has walked away and that
someone else could be behind the keyboard) it can set a timeout, in milliseconds.
But it can take a while for people to create credentials! They may have to dig a
security key out from the back of a drawer. Because of this, platforms are likely to
silently increase small timeouts to some minimum value. So a timeout of less than
five minutes (the recommended default) may be rounded up.

Secondly, there is the hints parameter. This is a catch-all for expressing non-bind-
ing requests to the platform. It is a list of strings and currently three are defined:

• security-key suggests that the platform should show a security key-focused UI.
Enterprise cases where security keys have been issued to employees should set
this.

• client-device suggests that the platform should focus the UI on using a platform
authenticator.

• hybrid suggests that the platform should expect the user to use an external mo-
bile device to complete the request. (See chapter 10.)

The first two of these somewhat duplicate the authenticatorAttachment field, de-
scribed above. Unlike that field, they do not forbid the use of other types of authen-

32 WEBAU THN

ticators. However, hints are not yet supported by all platforms and so cannot be
assumed to have any effect.

Attestation and extensions get their own chapters and are not covered here, but the
challenge parameter, which is unused during creation except for attestation, is re-
quired. You can set it to new Uint8Array([0]).buffer in all non-attestation cases.

Common patterns of options
A consumer site, prompting to create a first passkey with the local device:

(A website would have checked if a local authenticator exists first. See page 67.)

let promise = navigator.credentials.create({
 publicKey: {
 pubKeyCredParams: [
 {type: "public-key", alg: -7},
 {type: "public-key", alg: -257},
],
 authenticatorSelection: {
 authenticatorAttachment: "platform",
 userVerification: "discouraged",
 requireResidentKey: true,
 },
 rp: {id: "example.com", name: ""},
 user: {
 id: userId,
 name: "jsmith",
 displayName: "John Smith",
 },
 hints: ["client-device"],
 challenge: new Uint8Array([0]).buffer,
 }
});

A consumer site, after a user clicks “Add passkey” in their account settings:

let promise = navigator.credentials.create({
 publicKey: {
 pubKeyCredParams: [
 {type: "public-key", alg: -7},
 {type: "public-key", alg: -257},
],
 authenticatorSelection: {
 userVerification: "discouraged",
 requireResidentKey: true,
 },
 rp: {id: "example.com", name: ""},
 user: {
 id: userId,
 name: "jsmith",

WEBAU THN 33

 displayName: "John Smith",
 },
 hints: ["client-device"],
 challenge: new Uint8Array([0]).buffer,
 }
});

Interpreting the response
When the Promise returned by navigator.credentials.create resolves it might
result in an error. There are only three buckets of errors that need to be considered:
InvalidStateError, a programming error, and everything else.

InvalidStateError arises when the user attempts to use a platform authenticator
that already holds one of the credentials listed in excludeCredentials. Sites may
wish to report an error to the user in this case (“This device is already registered”)
or they may validly conclude that the user wanted the local device registered, and
it is registered, therefore that’s not really an error.

If there’s an error in the structure of the options (e.g. a required field is missing),
or the site is attempting to use an RP ID that it cannot use (see chapter 5), then a
descriptive error will be returned. But this is a bug in the Javascript that should be
resolved during development.

For privacy reasons, all other errors are essentially indistinguishable. They will of-
ten be of type NotAllowedError, and the error message may contain more details.
However the error messages are not stable and should not be used for anything
other than logging and debugging.

Assuming that promise resolves successfully, it returns a PublicKeyCredential.
Let’s take a look at what that contains.

interface PublicKeyCredential {
 ∕∕ The credential ID.
 USVString id;
 ArrayBuffer rawId;

 ∕∕ The type of authenticator used.
 DOMString? authenticatorAttachment;

 ∕∕ More about the credential.
 AuthenticatorAttestationResponse response;

 ∕∕ See extensions chapter.
 AuthenticationExtensionsClientOutputs getClientExtensionResults();
}

Firstly, you get the credential ID. Twice! id contains the credential ID as a string.
Then rawId contains it as an ArrayBuffer.

34 WEBAU THN

Where binary data is encoded in a string, WebAuthn always uses the base64url
variant of base64. This replaces the + and ∕ characters with - and _ and doesn’t in-
clude any = padding characters at the end. So the id field is the base64url encoding
of rawId.

Next, authenticatorAttachment will probably contain either platform or cross-
platform depending on the type of authenticator used. (The platform can omit this
field if it doesn’t know, and beware that it’s always possible that future versions of
WebAuthn will define new values.)

You should be expecting at least a public key too in order to be able to use this
credential, so let’s look inside response:

interface AuthenticatorAttestationResponse {
 ∕∕ The public key
 COSEAlgorithmIdentifier getPublicKeyAlgorithm();
 ArrayBuffer? getPublicKey();

 ∕∕ Information from the authenticator.
 sequence<DOMString> getTransports();
 ArrayBuffer getAuthenticatorData();

 ∕∕ Only used for attestation.
 ArrayBuffer clientDataJSON;
 ArrayBuffer attestationObject;
};

getTransports returns a list of strings that the site needs to store if it’ll ever request
this credential by ID. This will be covered later, in the section about getting signa-
tures from credentials.

Next there’s getAuthenticatorData. This returns a binary blob that comes directly
from the authenticator. It’s returned both when creating a credential and when get-
ting a signature from one and is covered in more detail later.

Getting the public key
The public key signature scheme of the new credential is returned by
getPublicKeyAlgorithm. It uses the same identifiers as pubKeyCredParams in the
options and the value must be one of the algorithms that was listed there. (See page
26.)

getPublicKey returns the public key itself in Subject Public Key Info (SPKI) format.
This is a commonly used format for public keys, but there are so many public key
formats that they get a chapter to themselves. (Chapter 13.) SPKI format can be
passed to, at least:

• Java’s java.security.spec.X509EncodedKeySpec.

WEBAU THN 35

• .NET’s System.Security.Cryptography.ECDsa.ImportSubjectPublicKeyInfo.
• Go’s crypto∕x509.ParsePKIXPublicKey.

(For more obscure public key schemes, the platform might not know how to convert
the public key and so getPublicKey can return null. That doesn’t apply to any of
the common formats discussed here but, if you’re using such a format, you’ll have
to extract the public key from the authenticator data, see chapter 7.)

There are more options in WebAuthn than in the U2F protocol! But we have finally
reached the core values that we expected to get when creating a credential: the cre-
dential ID and its public key. Think back to the introduction and recall that the other
major operation is getting a signature, where we expect to provide some credential
IDs (or not, with discoverable credentials) and a challenge value, and get back a
signature and the message that was signed, which should contain the challenge and
contextual information to prevent phishing.

Keep that big-picture view in mind as we dive into the second (and final) major
operation in WebAuthn.

Getting signatures
Getting signatures from credentials is also performed through the Credential Man-
agement API and looks like this:

const promise = navigator.credentials.get({publicKey: options});

That’s exactly the same as creating a credential except that, rather than create, the
operation is get. Again, a dictionary of options is passed in:

dictionary PublicKeyCredentialRequestOptions {
 ∕∕ Core parameters for getting a signature.
 required BufferSource challenge;
 sequence<PublicKeyCredentialDescriptor> allowCredentials = [];

 ∕∕ The relying party ID.
 USVString rpId;

 ∕∕ Whether to perform user verification.
 DOMString userVerification = "preferred";

 ∕∕ Controlling the platform UI.
 unsigned long timeout;
 sequence<DOMString> hints = [];

 ∕∕ Extension features.
 AuthenticationExtensionsClientInputs extensions;
};

36 WEBAU THN

The first option is hopefully familiar from the previous chapters. The challenge
makes the signature specific to a request so that it can’t be used again. It should
be a large, random value generated at the server and stored there, temporarily, to
check against when the signature is received.

The allowCredentials is the list of credential IDs or, if you’re using discoverable
credentials, it can be empty. If you do wish to pass a list of IDs, they’re not passed
directly but rather as a list of objects that look like this:

[{
 type: "public-key",
 transports: ["hybrid", "internal"],
 id: ∕* ArrayBuffer *∕,
}]

It’s structured just like excludeCredentials except for the additional transports
list. That list of transports should be copied verbatim from the result of calling
getTransports when creating a credential. (See above.)

The rpId is the relying party ID. It must match the value used when the credential
was created. See chapter 5 about picking a relying party ID.

The userVerification field is either discouraged, preferred, or required. This
has the same meaning as when the credential was created, see page 28. Note that
requiring user verification when it wasn’t performed at registration time might not
work: the credential might have been created on an authenticator that doesn’t sup-
port it. So this value will usually be the same as when the credential was created.

The timeout and hints parameters also have the same meaning as during creation,
and the extensions get their own chapter. And with that, we’re done. Handling the
response is more complex, however…

Interpreting the response
The result of the promise from get might, of course, be an error. There are no par-
ticular error cases that you need to handle, so all errors can be treated as generic
failures.

Otherwise the response to a signature request is also a PublicKeyCredential ob-
ject, but the type of the response field within it is different. Here’s a recap of the
structure, which was discussed on page 34.

interface PublicKeyCredential {
 ∕∕ The credential ID.
 USVString id;
 ArrayBuffer rawId;

 ∕∕ The type of authenticator used.
 DOMString? authenticatorAttachment;

WEBAU THN 37

 ∕∕ More about the assertion.
 AuthenticatorAssertionResponse response;

 AuthenticationExtensionsClientOutputs getClientExtensionResults();
}

This structure contains the credential ID (twice, again) which lets you know which
credential was used. If the allowCredentials list was empty, this tells you who the
purported user was. But, even if it wasn’t, allowCredentials can contain multiple
credentials and so this tells you which to validate against.

The rest of the new values are contained in the response field:

interface AuthenticatorAssertionResponse {
 ArrayBuffer? userHandle;
 ArrayBuffer signature;
 ArrayBuffer authenticatorData;

 ∕∕ Part of the signed message.
 ArrayBuffer clientDataJSON;
};

The name of this structure is the first time that we’ve come across the term assertion.
Until now we’ve always called the thing generated from the private key a signature.
The term assertion refers to the whole response, as defined here, and the rest of the
text will only use the word signature when specifically referring to that field.

An assertion contains several fields. First there’s a field called the userHandle.
Above, it was mentioned that the user ID is sometimes called the user handle, and
here it is! The value unfortunately has different names in the two places that it ap-
pears in WebAuthn, but it is the user.id value that was set at creation time.

Note that it’s optional. There was no user ID field in the U2F protocol when we
covered it, so U2F security keys cannot possibly store this value. In fact, non-dis-
coverable credentials aren’t required to store it, only discoverable ones. In either
case, this field should only be used in very particular situations:

The credential ID is the best identifier for a credential, but it’s randomly generated
by the authenticator. Some sites cannot support looking up an account based on an
identifier like that and must generate the identifiers themselves. The user ID can
serve that need since it’s specified by the site but, in order to ensure that it’s always
returned, such a site must require discoverable credentials. (See also page 103.)

The next field is the signature. This must be validated by the public key signature
scheme used by this credential. But, to do so, you need to construct the message
that was signed. That’s where the authenticator data comes in.

38 WEBAU THN

Authenticator data
The authenticator data is so named because it comes directly from the authenticator.
Since it’s included in the signed message, it must be exposed directly by WebAuthn:
any transformation would change the bits and cause the signature verification to
fail. So here you have to deal with a binary format; no more Javascript objects.

You might notice that looks very similar to the signed message format in the U2F
protocol. That is no accident! Since this data cannot be modified, in order to be
backwards compatible the format has only been added to since U2F. (Otherwise U2F
security keys wouldn’t be interoperable with WebAuthn.)

The flags are named with two-character abbreviations, as shown in the diagram
above:

• UP: User Presence. (Discussed previously.)
• UV: User Verification. (Discussed previously.)
• BE: Backup Eligible. Indicates that the credential can be backed up (i.e. is a

passkey).
• BS: Backup State. Indicates that the credential has been backed up. In practice,

passkey providers just set both BE and BS flags at all times. In theory, if syncing
was paused, then you could see BE set without BS, indicating that syncing was
pending.

• AT: Attested credential data. Indicates that an “attested credential data” structure
follows. This will always be set when creating a credential and never set when
getting an assertion. (See chapter 7.)

• ED: Extension Data. Indicates that a CBOR map of extension data follows. If both
AT and ED are set, then the extension data always comes second.

We are finally at the point where we can validate the signature! Since WebAuthn
is backwards compatible with U2F security keys, the signed message must be com-
patible with what U2F did, so it’s the concatenation of the authenticator data with
the hash of the clientDataJSON.

WEBAU THN 39

There are many checks that the server should make on the signed response in order
to be secure. These are covered in chapter 12. But congratulations, you now under-
stand the core of WebAuthn.

Client Data
We saw an example of the client data in the U2F chapter. It appears as the
clientDataJSON in the assertion response. Let’s look at it again and discuss each
value in more detail:

{
 "type": "webauthn.get",
 "challenge": "AAECAwQFBgcICQoLDA0ODw",
 "origin": "https:∕∕example.com",
 "crossOrigin": false
}

type

It’s good security hygiene to ensure that any signed message is unambiguous about
what it is. Many security issues have been caused by inducing two parties in a sys-
tem to have divergent views about what is going on. So the client data uses the type
field to specify the context in which it should be interpreted.

challenge

This field is the base64url encoding of the challenge specified in the request. As
discussed in the introduction, this ensures that the signature is specific to an au-
thentication request and doesn’t devolve into what is effectively a password for the
account that could be reused later.

origin

The origin field specifies the entity that requested the signature, here a URL. This
prevents phishing by ensuring that the signature is specific to the requester and
cannot be proxied by a malicious site. But the requester is not always a website.
Mobile apps can also make WebAuthn requests using platform APIs covered in
chapter 11.

For Android apps this field will contain android:apk-key-hash: followed by the
base64url encoding of the SHA-256 hash of the APK signing certificate. For iOS/
iPadOS, the origin will contain the requested RP ID with https:∕∕ prefixed. This is
a mistake! It’s probably too late to change it now but, because of this, it’s not pos-
sible to distinguish between requests from apps and requests from websites with
the Apple APIs.

crossOrigin

This specifies whether the request came from an iframe that is not same-origin with
all its parent frames. This is obviously specific to the web, and most sign-in pages

40 WEBAU THN

will use the frame-ancestors directive in a Content-Security-Policy header to
prevent ever being shown in an iframe. But, if you need to make WebAuthn requests
from an iframe, see page 71.

topOrigin

If crossOrigin is true, this contains the origin of the top-level frame, so that the
server can see where the iframe was embedded.

It’s important to note that these fields are not exclusive: more fields have been added
to WebAuthn over time. So a server-side validator must be able to handle unknown
fields in the JSON. But some validators do not want to have the complexity of a full
JSON parser. For them, WebAuthn does guarantee some additional structure:

The fields type, challenge, origin, and crossOrigin are guaranteed to appear
and guaranteed to appear in that order without any spaces or newlines between
the JSON tokens. If crossOrigin is true then the next field is guaranteed to be
topOrigin, again without any spaces or newlines between tokens. All strings in
this prefix are guaranteed to be minimally escaped.

Any implementation taking advantage of this should carefully follow these steps5.

Common patterns of options
A site using discoverable credentials:

let promise = navigator.credentials.get({
 publicKey: {
 challenge: new Uint8Array([
 ∕∕ Must be a cryptographically-random number sent
 ∕∕ by the server
 0x79, 0x50, 0x68, 0x71, 0xDA, 0xEE, 0xEE, 0xB9,
 0x94, 0xC3, 0xC2, 0x15, 0x67, 0x65, 0x26, 0x22,
 0xE3, 0xF3, 0xAB, 0x3B, 0x78, 0x2E, 0xD5, 0x6F,
 0x81, 0x26, 0xE2, 0xA6, 0x01, 0x7D, 0x74, 0x50,
]).buffer,
 },
});

An enterprise site, requesting that an employee authenticate with their issued se-
curity key:

let promise = navigator.credentials.get({
 publicKey: {
 allowCredentials: [{
 type: "public-key",
 id: new Uint8Array([
 0x94, 0x38, 0x2b, 0x37, 0xbf, 0x38, 0xc0, 0x05,
 0x9a, 0xbd, 0x16, 0x09, 0xdd, 0xf5, 0xd7, 0x0c,
]).buffer,
 transports: ["usb"],

WEBAU THN 41

 }],
 challenge: new Uint8Array([
 ∕∕ Must be a cryptographically-random number sent
 ∕∕ by the server
 0x79, 0x50, 0x68, 0x71, 0xDA, 0xEE, 0xEE, 0xB9,
 0x94, 0xC3, 0xC2, 0x15, 0x67, 0x65, 0x26, 0x22,
 0xE3, 0xF3, 0xAB, 0x3B, 0x78, 0x2E, 0xD5, 0x6F,
 0x81, 0x26, 0xE2, 0xA6, 0x01, 0x7D, 0x74, 0x50,
]).buffer,
 },
});

Threats
Keep in mind that WebAuthn is only about authentication. If you authenticate your-
self on a machine that is controlled by malware, then the malware has all the same
authority that you do. At best, some sites require frequent reauthentication with
WebAuthn so that the malware can’t exfiltrate long-lived cookies and has to remain
active on the compromised machine. That increases the attacker’s costs, but is no
silver bullet.

In the introduction we mentioned that Javascript injected into a site could steal
passwords. WebAuthn certainly stops passwords from being stolen by removing
the need to enter them. But, similar to the malware case, if the malicious Javascript
controls the origin context in the browser, it can make authenticated HTTP requests
just as if it were the user. It’s certainly a lot less convenient for the attacker than
exfiltrating a password, but an attack is still possible.

Lastly, many sites add WebAuthn as an authentication method alongside a pass-
word. But, as long as the password is still a valid way to sign in, a phishing site
can try to get the user to enter it by pretending that WebAuthn isn’t working. The
ultimate goal must be to remove passwords from accounts. The “backup state” flag
in the authenticator data reports whether a credential has been backed up and, if
an account has a backed-up credential, and the user has a history of successfully
using it, perhaps prompt them to disable their password.

It’s still the case that passwords cause a lot of problems and we should try to address
them. WebAuthn is by far the best prospect in that direction and the world would
be much better off if it succeeds. But magical thinking only leads to disappointment,
and WebAuthn isn’t magic.

42

1 www.w3.org 2 www.w3.org 3 en.wikipedia.org

4 media.defense.gov 5 www.w3.org

RELYING PARTY IDS 43

CHAPTER 5

Relying party IDs

As discussed in the previous chapter, relying party IDs (RP IDs) identify sites and
prevent the use of credentials between them.

This happens to result in some degree of phishing protection, but this mechanism
is not designed to prevent phishing. Phishing is stopped by the origin field in the
client data, which goes into the signed message. RP IDs, on the other hand, are:

1. A constraint to prevent credentials from being used too widely. WebAuthn delib-
erately does not want people to have a single credential that is used everywhere.

2. A way to filter candidate discoverable credentials so that a user is only shown a
list of applicable accounts to choose from.

3. A way to prevent other sites from obtaining any secrets linked to the credential.
(See page 76.)

RP IDs are “domain shaped” rather than “URL shaped”. E.g. example.com is an RP
ID, but https:∕∕example.com is not.

(The U2F Javascript API, which was mentioned in chapter 2, did use URL-shaped
values as RP IDs, which it called AppIDs. That has an impact on WebAuthn in the
form of the appid and appidExclude extensions, which are covered on page 84. But
otherwise AppIDs are irrelevant now.)

Every operation has an RP ID associated with it, whether it’s using the WebAuthn
API or one of the platform APIs. While an API may pick a default RP ID if one isn’t
specified, it’s always possible to request a specific RP ID, and so every API defines
a way of validating whether a website or app is allowed to request a specific RP ID.

For WebAuthn, the default RP ID is the domain of the current origin. So for https:∕∕
example.com the default RP ID is example.com. WebAuthn allows an origin to claim
any RP ID that can be formed by discarding zero or more “labels” from the left of its
domain name until it hits an effective TLD1. A label in a domain name is a substring
delimited by periods. So for www.example.com, the labels are www, example, and com.
(Plus the empty label at the end to represent the root, but we’ll ignore that.)

An effective TLD is an effective top-level domain. That is either a top-level domain,
like com, or a domain that acts like a top-level domain and is listed in the Public
Suffix List2, like co.uk.

So say that the current origin is https:∕∕www.example.co.uk: it can specify an RP
ID of www.example.co.uk (discarding zero labels), example.co.uk (discarding one

44 RELYING PARTY IDS

label), but not co.uk because that’s an effective TLD. It also couldn’t specify an RP
ID of example.com because that’s a different site: that domain cannot be formed
simply by discarding labels from the left of www.example.co.uk.

There is no relationship between similar-looking RP IDs beyond WebAuthn’s
rules for which origins can claim which RP IDs. So www.example.co.uk is as
different to example.co.uk as to example.org. Recall that RP IDs are hashed
before being sent to U2F security keys, enforcing that all internal structure is
irrelevant.

Android
Android checks whether a given app is allowed to use an RP ID by treating the RP ID
as a domain name and fetching https:∕∕example.com∕.well-known∕assetlinks.
json. This needs to be a JSON file in the Digital Asset Links format, which broadly
attempts to describe the relations between different entities.

In fact, it’s incorrect to say that “Android” checks this because the check is ac-
tually performed by the passkey provider handling the request. Google Pass-
word Manager, which ships as part of Play Services, uses assetlinks.json
and has defined the norm on that platform, but, technically, other password
managers could decide to do something different.

The assetlinks.json file needs to contain JSON similar to the following:

[
 {
 "relation" : [
 "delegate_permission∕common.handle_all_urls",
 "delegate_permission∕common.get_login_creds"
],
 "target" : {
 "namespace" : "android_app",
 "package_name" : "PACKAGE_NAME",
 "sha256_cert_fingerprints" : [
 "APK_CERTIFICATE_FINGERPRINT"
]
 }
 }
]

The PACKAGE_NAME placeholder should be replaced with the name of the Android
package, e.g. com.example.myapp. The APK_CERTIFICATE_FINGERPRINT should be
replaced with a hex-with-colons encoded, SHA-256 hash of the APK signing cer-
tificate. You can get this value from an APK with:

RELYING PARTY IDS 45

keytool -list -printcert -jarfile app.apk

Or you can run .∕gradlew signingReport in your build directory. Either way,
the fingerprint value must separate each pair of hex digits with a colon, like
ab:cd:12:34:....

This JSON object should be replicated for each app that needs access to the RP ID.
When doing so, consider that this is declaring a significant level of trust for each
listed app. Not only can they use the RP ID, but saved passwords may be shared
between these apps and the website too.

Currently, the only relation needed is delegate_ permission∕common. handle_ all_ -
urls, but Google hopes to transition to the more specific delegate_ permission∕
common. get_ login_ creds relation in the future and currently documents that apps
should list both.

The assetlinks.json is currently not allowed to be behind a redirect. So, if
https:∕∕example.com just serves redirects to https:∕∕www.example.com then that
won’t work. To debug issues, run:

curl 'https:∕∕digitalassetlinks.googleapis.com∕v1∕assetlinks:check?
source.web.site=https:∕∕example.com&relation=delegate_permission∕
common.handle_all_urls&target.android_app.package_name=PACKAGE_NAME&
target.android_app.certificate.sha256_fingerprint=APK_CERTIFICATE_
FINGERPRINT'

Remember to replace PACKAGE_NAME and APK_CERTIFICATE_FINGERPRINT with the
same values as in the JSON above.

To see an example of an assetlinks.json file, try fetching it for a commonly-
known site. E.g. https:∕∕amazon.com∕.well-known∕assetlinks.json.

Apple platforms
The Apple platforms use a similar system of .well-known files in order to decide
which apps are allowed to use a given RP ID. For Apple devices, the file is https:∕∕
example.com∕.well-known∕apple-app-site-association and it should include
something like this:

{
 "webcredentials": {
 "apps": ["T7AYYU7S6A.example.com.YourApp"]
 }
}

The first label of the app identifier (T7AYYU7S6A in the example) is your “Team ID”.
You can find this under “Membership details” on https:∕∕developer.apple.com∕
account. The rest is the “bundle identifier” for your app, which is set when the pro-
ject is created.

46 RELYING PARTY IDS

Requests for this file will come from Apple’s servers by default but, for testing, it’s
possible to enable “Associated Domains Development” in the Developer menu on
iOS. (But only, it seems, on devices. The option doesn’t appear in the simulator.)
If you want to see what Apple’s servers see for your domain, fetch https:∕∕app-
site-association.cdn-apple.com∕a∕v1∕example.com.

An app also needs to list webcredentials:example.com as a domain in the “Asso-
ciated Domains” capability.

If you change your site association file, delete the app and reinstall to ensure that
any caches are updated on the device.

Browsers and other privileged apps
Browsers have to be special. Consider what would happen if you browsed to
https:∕∕example.com on a phone and tried to use a passkey to sign in. Using just
the rules specified above, example.com would have to authorize every possible
browser app to use its RP ID.

This would be untenable, so browsers have to be trusted to act as any RP ID. There
are processes run by both Apple and Google to recognize trusted browser apps for
this purpose.

As with assetlinks.json, the set of recognized browsers on Android is just
a norm established by Google Password Manager, which publishes its list of
trusted browsers at https:∕∕gstatic.com∕gpm-passkeys-privileged-apps∕
apps.json. Other password managers on Android tend to follow this norm.

Considerations when choosing an RP ID
It’s important to carefully consider RP IDs from the outset. Let’s take the example of
https:∕∕www.example.co.uk. That site might happily be creating credentials with
its default RP ID (www.example.co.uk) but later decide that it wants to move all
sign-in activity to an isolated origin, https:∕∕accounts.example.co.uk. But none
of its credentials could be used from that origin. It could discard a label from the
left to form example.co.uk, but the rules don’t allow any labels to be prepended, so
www.example.co.uk isn’t a valid RP ID for that origin. The site would have needed
to create credentials with an RP ID of example.co.uk from the outset.

But the rule is not to always use the most general RP ID possible. Going back
to our example, if https:∕∕usercontent.example.co.uk existed to host uploaded
content, then pages on that origin could create credentials with an RP ID of
example.co.uk. We can assume that accounts.example.co.uk is checking the ori-
gin of any assertions, so usercontent.example.co.uk can’t use its ability to set an
RP ID of example.co.uk to generate valid signatures, but it can still try to get the

RELYING PARTY IDS 47

user to create new credentials which could overwrite the legitimate ones. It can
also get any secrets associated with the credentials because it can assert them. (See
page 76.)

All this means that the choice of RP ID needs to be considered carefully at the be-
ginning of any deployment.

Related origins
As described above, you have a lot more freedom with the native APIs than you
do on the web. With the native APIs, you can nominate many apps to be able to
use your RP ID, but the rules on the web don’t allow any other website, even with
permission, to use another site’s RP ID.

Not all websites fit into that structure. Some are spread across country code top-
level domains and exist as example.com, example.de, example.in, etc. But with the
rules above, none of those country-specific instances of the site could share cre-
dentials. Sometimes two different brands are intimately linked, but have separate
websites, like Hilton and DoubleTree.

Probably the best option in this case is to use a single origin to handle all sign-ins,
and use a federation protocol like OpenID Connect3 on the related sites. But not all
websites can do that, thus the RP ID rules for the web were relaxed somewhat with
the introduction of related origins. When a WebAuthn request specifies an RP ID
that would not be permitted under the rules above, browsers that implement related
origins will attempt to fetch a document hosted at the following URL.

https:∕∕example.com∕.well-known∕webauthn

If it exists, and has the MIME type application∕json, then it is parsed as JSON and
can contain something like the following.

{
 "origins": [
 "https:∕∕example.com",
 "https:∕∕example.co.uk",
 "https:∕∕example.in",
 "https:∕∕www.example.in",
 "https:∕∕otherbrand.com"
]
}

If the origin that made the WebAuthn request is listed as one of the permitted ori-
gins in that document, then the request will be allowed to continue. However, there
are limits on how many origins can be listed like that:

48 RELYING PARTY IDS

For each listed origin, its eTLD+1 label is extracted from its domain name. The
eTLD+1 label is the rightmost label that is not part of the effective TLD. For the
example origins above:

Origin eTLD+1 label

https:∕∕example.com example

https:∕∕example.co.uk example

https:∕∕example.in example

https:∕∕www.example.in example

https:∕∕otherbrand.com otherbrand

The maximum number of distinct eTLD+1 labels currently permitted by browsers
is five. So for sites that are spread across many country-code top-level domains, all
of those domains only count as one label. But if you have many different brands,
then you could quickly hit the limit.

1 en.wikipedia.org 2 publicsuffix.org 3 openid.net

49

CHAPTER 6

CTAP2

Chapter 2 covered the protocol for communicating with U2F security keys, but that
protocol doesn’t support discoverable credentials, user verification, or many other
features of WebAuthn. So a new protocol for communicating with security keys
was needed: CTAP2. (Computer To Authenticator Protocol Two; the U2F protocol
can be considered to be CTAP1.)

CTAP2 is a significantly more complex protocol which involves the computer and
security key exchanging messages encoded in a format called CBOR. This use of
CBOR breaks through into WebAuthn in several places so, even if you’re going to
skip most of this chapter, a familiarity with CBOR will be valuable.

CBOR
CBOR officially stands for “Concise Binary Object Representation”, but the lead au-
thor’s name is C. Bormann, which might have had more to do with it. It is described
in RFC 89491 and is a MsgPack-inspired format in the family of “binary JSONs”.

CTAP2 (and thus WebAuthn) only uses a subset of CBOR, which will be described
here. CBOR used in CTAP2 and WebAuthn must conform to this subset, so beware
of using generic CBOR libraries for encoding as they may not stay within it.

Each CBOR value (called a data item) starts with a leading byte. The most-signifi-
cant three bits specify the major type from zero to seven. The value of the five least-
significant bits specifies how to calculate the argument:

• ≤23: the argument is the value of the five least significant bits.
• 24: the argument is taken from the following byte.
• 25: the argument is taken from the following two bytes, in big-endian order.
• 26: the argument is taken from the following four bytes, in big-endian order.
• 27: the argument is taken from the following eight bytes, in big-endian order.
• ≥ 28: invalid in CTAP2.

The argument is then interpreted depending on the value of the major type:

• 0: the argument is an unsigned integer.
• 1: the argument is a negative integer formed by adding one to the value and

negating. Thus an argument of 19 represents −20.
• 2: a byte string. The argument specifies the number of following bytes that make

up the byte string.

50 CTAP2

• 3: a text string: The argument specifies the number of following bytes that are
a UTF-8 encoded string. (But see below because text strings aren’t always valid
UTF-8 in CTAP2.)

• 4: an array. The argument specifies the number of following data items in the
array.

• 5: a map. The argument specifies the number of pairs of data items that follow.
The first value in each pair is a key, and the second is the corresponding value.

• 6: invalid in CTAP2
• 7: the argument is either 20 to represent the false value or 21 to represent true.

All other values are invalid in CTAP2.

There are some additional rules applied to ensure that the CBOR is canonically en-
coded. I.e. that a given CBOR message has exactly one valid encoding:

1. Arguments must be encoded in the fewest possible bytes. So the value 10 is al-
ways encoded in a single byte and a byte string of length 10 never encodes that
length with any additional bytes.

2. The pairs of data items in a map are sorted by key. Lower major types sort first
with ties resolved in favor of shorter keys. If two keys have the same major type
and length, then they are compared lexicographically. (Two identical keys can-
not appear in a map.)

This canonical form is the same as the Core Deterministic Encoding Requirements2

from the CBOR RFC, since only integers and strings appear as map keys in CTAP2,
but it is not the same as the “Canonical CBOR” section of the older RFC 7049.

Since security keys are either impossible or very difficult to update, and often
under significant code-size pressure, using canonical encodings minimizes in-
teroperability problems.

In the underlying CBOR data model, integers are signed, 65-bit values. However,
since support for 65-bit integers is rare in programming languages, treating inte-
gers as signed 64-bit values is always sufficient in CTAP2.

One point about UTF-8 strings is worth keeping in mind. Security keys are embed-
ded devices with limited storage and CPU. WebAuthn allows sites to specify arbi-
trary strings for things like user names, which security keys have to store (at least
for discoverable credentials). Since storage is limited, security keys are allowed to
truncate overly-long strings. However, when they do that truncation, they often do
so after a fixed number of bytes, which may fall in the middle of a multi-byte UTF-8
sequence. Thus, when that string is returned in response to a future operation, the
UTF-8 will be invalid. Platforms have to make accommodations for this because

CTAP2 51

that makes the CBOR from security keys technically invalid and standard CBOR
parsers will reject it.

Commands and responses
Commands in CTAP2 consist of a single byte to identify the command, followed by
a CBOR map with all the parameters. Responses consist of a single-byte response
code which is either non-zero, representing an error, or zero for success. Successful
responses are optionally followed by a CBOR map with details of the response.

Let’s look at the first command sent to a CTAP2 security key: authen tica tor Get -
Info. It’s command number four, and it doesn’t have any parameters, so the whole
command is a single byte with value 0x04. The response will consist of a zero byte
(to indicate success) followed by a CBOR map. Let’s look at the contents of that
map (translated into CBOR’s diagnostic notation) to get a feel for the protocol.

(There’s a lot here, you don’t need to understand everything. It’s just to give a sketch
of all that’s contained in CTAP2.)

{
 # Supported protocol revisions
 1: ["FIDO_2_0", "FIDO_2_1_PRE", "FIDO_2_1"],
 # Supported extensions.
 2: [
 "credProtect",
 "hmac-secret",
 "largeBlobKey",
 "credBlob",
 "minPinLength"
],
 # The AAGUID of the security key. This identifies the make & model
 # of security key.
 3: h'D8522D9F575B486688A9BA99FA02F35B',
 4: {
 # Supports discoverable credentials.
 "rk": true,
 # Supports user presence tests.
 "up": true,
 # Supports user verification, but it's not configured.
 "uv": false,
 # Is not a platform authenticator.
 "plat": false,
 # Not actually an official option!
 "uvToken": true,
 # The security key will do user verification for all operations.
 "alwaysUv": true,
 # Supports listing and deleting discoverable credentials.
 "credMgmt": true,
 # Supports the `authenticatorConfig` CTAP2 command.

52 CTAP2

 "authnrCfg": true,
 # Has a biometric sensor, but it's not configured.
 "bioEnroll": false,
 # Supports PIN entry on the computer.
 "clientPin": true,
 # Supports the largeBlob extension.
 "largeBlobs": true,
 # Supports tokenized user verification.
 "pinUvAuthToken": true,
 # Supports configuring the minimum PIN length.
 "setMinPINLength": true,
 # Doesn't support creating credentials without user verification.
 "makeCredUvNotRqd": false,
 # Whether the authenticator supports older versions of a couple
 # of commands.
 "credentialMgmtPreview": true,
 "userVerificationMgmtPreview": false
 },
 # Maximum command size, in bytes.
 5: 1200,
 # User verification token protocol versions, in preference order.
 6: [2, 1],
 # Maximum number of credential IDs that can be included in a
 # single command
 7: 8,
 # The maximum length of a credential ID from this security key.
 8: 128,
 # The list of supported transports.
 9: ["usb"],
 # The list of supported signature schemes: ECDSA with P-256
 # and Ed25519.
 10: [
 {"alg": -7, "type": "public-key"},
 {"alg": -8, "type": "public-key"}
],
 # Maximum largeBlob array.
 11: 1024,
 # The current PIN doesn't have to be changed immediately.
 12: false,
 # The minimum PIN length.
 13: 4,
 # Firmware version.
 14: 328966,
 # Maximum length of a credBlob value.
 15: 32,
 # Number of RP IDs that can be configured to receive the minimum
 # PIN length.
 16: 1,
 # Number of biometric attempts that can fail before falling back
 # to using a PIN.

CTAP2 53

 17: 3,
 # The type of biometric sensor used: a fingerprint reader
 18: 2,
 # How many more discoverable credentials can the security key store.
 20: 25
}

A few patterns of the protocol are demonstrated here: the top-level keys in the
CBOR maps are integers for compactness, but strings can be used to identify things
too. Sometimes WebAuthn Javascript structures are transliterated into CBOR: key
10 clearly mirrors the pubKeyCredParams structure which should be familiar from
chapter 4. Lastly, it’s obviously a lot more complex than U2F!

We won’t be covering every corner of CTAP2 in this book; instead we’ll be focus-
ing on some of the higher-level concepts. The FIDO Alliance publishes the CTAP2
specification3 if you want all the details.

If you want to see the authenticatorGetInfo response for a given CTAP2 security
key, do an operation with it in Chrome on macOS or Linux and then open chrome:∕∕
device-log. It’ll be logged there along with other details of the request.

User verification
User verification is one of the headline features of CTAP2. But performing a single
WebAuthn operation can require many CTAP2 commands, in the same way that it
required many U2F messages. So the platform has to ask the security key to verify
the user, and the security key returns a secret value to the platform to represent
that verification, which the platform uses as an HMAC key to authenticate all the
commands to which that verification applies. The platform is then trusted to discard
the token (although there are limits, as we’ll see).

There are broadly two forms of user verification supported in CTAP2. Either the
user verification is built into the security key itself (with a fingerprint reader or a
PIN pad), or user verification is done by entering a PIN on the computer and send-
ing it to the security key to be checked. The CTAP2 spec refers to the computer as
the “client” and thus the latter pattern is called client PIN.

The former is more secure because it eliminates the risk of the PIN being captured
while it is entered on the computer. But a client PIN allows for security keys to be
simpler and cheaper.

PIN protocols
CTAP2 does not expose PINs and user verification tokens as plaintext in the proto-
col. While that’s not a huge concern for USB-connected security keys, security keys
can also work via NFC. So the computer and security key perform an elliptic-curve

54 CTAP2

Diffie–Hellman (ECDH) key agreement whenever UV is used in order to mutually
calculate a secret key to encrypt any PINs and tokens with.

The PIN protocol (which, despite the name, is also used for built-in user verification
methods to protect the resulting token) specifies the key agreement, encryption,
and authentication primitives to use. There are only two defined by CTAP2 and the
second is just a tweak of the first to make it easier to certify under NIST’s FIPS 140
programs. The second version is now required to be implemented by security keys
and so will slowly replace the first. That’s what will be described here.

Client PIN
In the authenticatorGetInfo response above, both clientPin and pinUvAuthToken
are true, which means that the security key has a PIN set and supports getting a
token to represent a user verification. To get this token, the platform would do the
following:

1. Ask the user to enter their PIN.
2. Hash it with SHA-256.
3. Send an authenticatorClientPIN command to get an ephemeral ECDH value

from the security key.
4. Send another authenticatorClientPIN with its own ECDH value and 16 bytes

of the hashed PIN, encrypted with the mutual shared secret from the ECDH cal-
culation.

The security key decrypts the PIN hash and compares it against the correct value.
The security key can enforce a maximum number of attempts but, if it’s satisfied,
it encrypts a random value, called a PIN/UV Authentication Token (PUAT), and re-
turns it to the platform.

Now that the platform has the PUAT, it can use it as an HMAC key to authenticate
future commands. When it requested the PUAT, the platform had to specify what
type of commands it was planning to use it for, and the relying party ID for all those
commands. Thus, even if the PUAT leaks, its scope is limited.

That doesn’t make a lot of difference if UV is implemented with client PIN because
a misbehaving platform could just save the PIN itself, and obtain as many PUATs
as it needed. But when user verification is built into the security key, it does limit
the abilities of misbehaving platforms a little.

Getting a PUAT from a security key that has a built-in method of user verification,
like a fingerprint reader, looks very similar, but there’s no encrypted PIN in the
request. In contrast with U2F, CTAP2 security keys don’t have to immediately re-
spond to commands and so can take their time, flashing and waiting for the user to
present their fingerprint.

CTAP2 55

However, security keys with fingerprint readers will often have a client PIN too
because fingerprint readers can be temperamental.

Making credentials and getting assertions
Having covered these operations in detail in chapter 4, there is not much more that
needs to be said about them here, because the CTAP2 commands for these opera-
tions simply transliterate most of the WebAuthn structures into CBOR.

The complexity of implementing these operations in CTAP2 comes from the fact
that the size of the commands can exceed the message buffer of the security key.
If you look at the example authenticatorGetInfo result above, key 5 specifies the
maximum number of bytes in a command, but the excludedCredentials list in a
create() operation, or the allowCredentials list in a get(), can be arbitrarily long.
While it’s unusual, it’s valid to have 50 credential IDs, each of which are 100 bytes.
That would exceed the message buffer of nearly any security key.

The authenticatorGetInfo result specifies the maximum length of a credential ID
that the security key will generate (in key 8). So any credential IDs longer than this
can be discarded by the platform when interacting with this security key, poten-
tially reducing the problem but the core issue remains.

So, after doing that filtering, the platform needs to split up the list of credential IDs
into batches such that no batch causes a command to be too long. It will then probe
for credential IDs with these batches, very much like the U2F protocol, until it finds
a batch where one of the credential IDs was recognized by the security key. Each
of these probe messages sets the up (user presence) flag to false, so that no physical
interaction with the security key is needed.

Things get particularly complicated when user verification interacts with the appId
extension (see page 84) but these are details that only platform implementers need
to concern themselves with, and so we won’t cover them here.

Management commands
CTAP2 also includes a number of commands that aren’t directly used for imple-
menting WebAuthn operations, but it’s still useful to be aware of them.

Reset
Security keys support being reset. This erases all credentials and configuration, and
rotates any root secret for stateless credentials such that they are invalidated. For
obvious reasons, this is a dangerous command! Thus, security keys don’t always
support this command over NFC if they also support USB and, over USB, this com-
mand is only valid within a few seconds of inserting the security key.

Fingerprint enrollment
CTAP2 allows the platform to drive fingerprint enrollment and to manage finger-

56 CTAP2

print templates. The enrollment process is like that for any fingerprint reader: you
have to press your finger repeatedly on the sensor until it has gathered enough data
to compute a template that it can later match against. The security key can return a
series of status messages (“finger too far to the left”, “finger wasn’t pressed for long
enough”, etc) for the platform to report back to the user.

The authenticatorBioEnrollment command also allows the platform to list and
delete any existing templates, each of which can have a “friendly name” set so that
the user can identify them.

Credential management
The authenticatorCredentialManagement lets the platform list the RP IDs of all
the discoverable credentials on a security key. Then, for a given RP ID, it lets the
platform list each discoverable credential recorded, including the user information.
Discoverable credentials can be deleted, and the user information can be updated.

Miscellaneous configuration
The authenticatorConfig command allows a number of miscellaneous features to
be controlled:

• Enterprise attestation (see page 64) can be turned on and off.
• If the security key supports it, the policy to require user verification for every

operation can be turned on and off.
• The set of RP IDs that can query for the minimum PIN length (see page 83) can

be set.

1 www.rfc-editor.org 2 datatracker.ietf.org 3 fidoalliance.org

57

CHAPTER 7

Attestation

If a company has distributed security keys to its employees in order to protect au-
thentication to its corporate resources, it might want to know if those employees
are actually using them and not others. It might even want to know that they are
using the precise security key that was inventory tracked and assigned to them.
That is what attestation is for.

Nearly all security keys ship from the factory with an attestation private key in-
cluded within them. Unlike every other private key that we have dealt with so far, it
is not generated on demand and it is not specific to any given credential; it is global
to the security key. When you create a credential in these security keys, they will
sign over the resulting public key with their attestation private key to show that
the newly generated key was generated within that security key.

This creates a tension: if the attestation private key were specific to the security
key then all credentials generated in that security key could be correlated across
RPs. But if the same private key were used in lots of security keys then the poten-
tial would exist for an attacker to extract it from another security key of the same
model, and so the security of the attestation private key would be reduced.

FIDO balanced this tension by requiring that attestation private keys must be used
over a batch of at least 100 000 security keys. So they do not uniquely identify an
individual security key, they instead identify a large batch of them and so convey
only the make and model of the security key. Correspondingly, this means that if
you have the right (expensive) equipment, you could buy a security key from that
batch and extract the attestation private key. (And some security keys don’t sell
well enough to ever have a full 100 000-unit batch and, for those, the privacy is pro-
portionally limited.)

For cases where this level of attestation is insufficient, and the attestation private
key really needs to be specific to a security key, the concept of “enterprise attesta-
tion” was created, which allows this in a restricted fashion.

Getting attestation
WebAuthn does not provide attestation by default; it’s assumed that most sites will
not want it. To request attestation when making a credential, set the attestation
parameter in the PublicKeyCredentialCreationOptions dictionary to direct.

58 AT TESTATION

Just like a regular signature in WebAuthn, you want to bind the signature from the
attestation private key to the specific creation, thus it needs a challenge. Therefore,
when doing attestation, set the challenge parameter in that dictionary to a large
random value from the server.

Once the credential has been successfully created, you may have received an attes-
tation. To find out, you need to look at the response.attestationObject field of
the resulting PublicKeyCredential.

Since this field can contain data that comes directly from the security key, and is
signed by the attestation private key, we are leaving the realm of JavaScript. It is a
CBOR map in the CTAP2 subset of CBOR (see chapter 6). It contains the attestation
information but also the credential public key and the authenticator data (see page
39).

Having the public key inside attestationObject may sound duplicative because
chapter 4 already covered how to get the public key. But the server cannot use
the getPublicKey, getAuthenticatorData, and getPublicKeyAlgorithm methods
when checking attestation. Those methods are convenient because the platform will
do the parsing and conversion for you, but the attestation private key doesn’t sign
the nicely parsed and converted values, it signs the raw data from the security key.
And so an implementation that wants to check attestation must only trust the raw
data in attestationObject.

The CBOR map will contain at least the following keys:

Key Value

fmt A string that specifies the type of attestation provided. If this is
none, then no attestation has been provided.

authData The authenticator data, a byte string.

attStmt The attestation information itself.

The authenticator data here is the same authenticator data that is returned when
getting a regular signature (see page 39) except that it will have the AT flag set,
indicating that “ATtested credential data” follows the signature counter. This new
data has the following format:

AT TESTATION 59

The AAGUID is a random, 16-byte value that identifies a model of security key and
is used when validating the attestation. The variable-length credential ID is as ex-
plained in chapter 2, but the public key is in the obscure COSE format. (See chapter
13 for details of public key formats and how to convert between them.) There’s no
length prefix for the public key and the attested credential data may be followed by
extension data if the ED flag is set. So, in order to find the end of the COSE key and
thus the start of the extension data, you have to parse the CBOR map.

When checking an attestation, you also need to extract the clientDataJSON field
from the PublicKeyCredential’s response field. This JSON is similar to what you
have seen before except that the type will now be webauthn.create. When not
checking attestation there’s no point looking at this field because, if an attacker
was trying to do something nefarious, they could just update it. But it is covered
by the attestation signature so it’s meaningful to check it in the same way as when
processing a regular credential signature.

U2F attestation
Recall from chapter 2 that when a U2F security key creates a credential, it returns
an X.509 certificate and a signature. That certificate contains the attestation public
key and the signature is made by the attestation private key.

Any attestations from a U2F security key will appear in WebAuthn with a fmt of
fido-u2f because the platform will convert them. Seeing this format thus indicates
that you have to validate a U2F attestation. The attStmt in this case will be a CBOR
map (in CTAP2 format, as always) with the following keys:

Key Value

x5c The X.509 certificate as a byte string

sig A P-256 ECDSA signature in ASN.1 DER format

The data signed by the attestation private key for this format is the following, con-
catenated:

• A zero byte.
• The SHA-256 hash of the RP ID.
• The SHA-256 hash of the clientDataJSON value.

60 AT TESTATION

• The credential ID.
• The credential public key in uncompressed X9.62 format. (See chapter 13 for de-

tails of different formats.)

The X.509 certificate contains the attestation public key, but how do you trust it?
One answer is that, if your company is purchasing a large number of security keys
to distribute to its employees, it can simply ask the vendor of those security keys for
their root certificate. The attestation certificate in x5c should be signed by that root
certificate to show that it is authentic. The FIDO Alliance also provides a repository
of information about certified security keys, indexed by AAGUID, which is covered
in the next section.

The U2F protocol, however, doesn’t include any AAGUIDs, so the AAGUID for a
fido-u2f attestation will always be zero and some bespoke configuration will be
needed to know the attestation roots for validation. That’s fixed with CTAP2 au-
thenticators which use the packed attestation format.

Packed attestation
The significant changes with packed attestation are the following:

• The fmt is packed.
• The x5c key in attStmt now contains a CBOR array of one or more byte strings.

The first is the attestation certificate and the remainder (if any) are additional
X.509 certificates that form a certificate chain to the root.

• There is also an alg key in the attStmt that contains the COSE algorithm ID of
the signature scheme used to produce the signature.

• The signed data is now the concatenation of the authenticator data and the
SHA-256 hash of the clientDataJSON—matching the form used for regular cre-
dential signatures.

CTAP2 security keys will produce attestations in this form. Let’s do a worked ex-
ample with one.

After creating a credential with attestation set to direct, we inspect
response.attestationObject in the resulting PublicKeyCredential and decode it
as the CTAP2 subset of CBOR (see chapter 6) to get:

{
 "fmt": "packed",
 "attStmt": {
 "alg": -7, # ECDSA with P-256 and SHA-256
 "sig": h'30460221...',
 "x5c": [h'308202be30...']
 },
 "authData": h'f95bc73828...'
}

AT TESTATION 61

The authenticator data from authData (see page 39) breaks down as:

SHA-256 hash of the RP ID
f95bc73828ee210f9fd3bbe72d97908013b0a3759e9aea3d0ae318766cd2e1ad
Flags: AT, UV, and UP set.
45
Signature counter
0000001f
Attested credential data
AAGUID
f8a011f38c0a4d15800617111f9edc7d
Credential ID length
0040
Credential ID
3429904107e65bf06f19fd8fa55b4bda
04ede99c1a6994c6bc315252cc6940bf
aeb0c7c62dc88214fc52cb7105aa33da
7b480da9012c36853d4179f159c9348c
Public key in COSE format
a5010203262001215820bc767fb6069f
fd51dbd04916030ec23399e72eefab22
352f29906621351dc83122582066c21d
877c48527407f891ba9611ba85eed1b9
b00164daf2f0a67c39038d771f

While packed attestation can contain multiple X.509 certificates to form a chain to
the root, this attestation only includes a single certificate, which contains the fol-
lowing:

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 1955003842 (0x7486fdc2)
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: CN=Yubico U2F Root CA Serial 457200631
 Validity
 Not Before: Aug 1 00:00:00 2014 GMT
 Not After : Sep 4 00:00:00 2050 GMT
 Subject: C=SE, O=Yubico AB, OU=Authenticator Attestation,
 CN=Yubico U2F EE Serial 1955003842
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 04:95:5d:f3:ad:f7:24:7d:31:75:ef:fd:9c:c4:f3:
 1a:4e:87:8e:ba:e1:81:09:56:61:50:fb:38:8b:2e:
 5f:65:27:bf:57:40:9a:a5:81:a5:0d:0a:c5:2f:18:
 44:5c:0a:13:54:8a:13:53:c8:a4:e5:9a:70:4e:52:
 3b:c0:4d:eb:ed
 ASN1 OID: prime256v1

62 AT TESTATION

 NIST CURVE: P-256
 X509v3 extensions:
 1.3.6.1.4.1.41482.2:
 1.3.6.1.4.1.41482.1.1
 1.3.6.1.4.1.45724.2.1.1:
 ...
 1.3.6.1.4.1.45724.1.1.4:
 M........}
 X509v3 Basic Constraints: critical
 CA:FALSE
 Signature Algorithm: sha256WithRSAEncryption
 31:5c:48:80:e6:9a:52:7e:38:66:89:bd:69:fd:0a:a8:6f:49:
 ...

The AAGUID (f8a011f3-8c0a-4d15-8006-17111f9edc7d) from the authenticator
data can be used to look the security key up in the FIDO Alliance’s metadata. The
set of metadata can be downloaded by fetching https:∕∕mds.fidoalliance.org∕,
which results in a signed JWT. (Information about the metadata service can be
found at https:∕∕fidoalliance.org∕metadata∕1.)

We can find the record for this security key by running:

curl https:∕∕mds.fidoalliance.org∕ | \
cut -d. -f2 | \
python3 -c "import sys, base64;
sys.stdout.buffer.write(
 base64.urlsafe_b64decode(sys.stdin.read().strip()))" | \
jq '.entries[] |
 select(.aaguid == "f8a011f3-8c0a-4d15-8006-17111f9edc7d")'

While the data is being downloaded using HTTPS, this one-liner doesn’t val-
idate the JWT signature. You may wish to do that.

Within the JSON record is an attestationRootCertificates field that contains
the attestation root certificate for this device. Now we can check that the attesta-
tion certificate is valid using standard X.509 libraries. For illustration we’ll use the
OpenSSL command-line tool:

openssl verify -CAfile root-certificate.pem attestation-
certificate.pem
attestation-certificate.pem: OK

The public key from the attestation certificate can be used to verify the attestation
signature by appending the SHA-256 hash of clientDataJSON to the authenticator
data. This provides evidence that the COSE-format public key in the authenticator
data really was generated inside a security key of the attested make & model. A real

AT TESTATION 63

implementation wouldn’t use command line tools, of course, and should perform
each step of the validation procedures2 from the specification.

CTAP2 security keys often also still support the U2F protocol, and will produce
fido-u2f attestations if used via that protocol. Since early CTAP2 security
keys could not create credentials without doing user verification once a PIN
had been configured, attempts to create non-discoverable credentials without
user verification may still use the U2F protocol even though a security key
supports CTAP2.

You might also come across a packed attestation that is missing the x5c key com-
pletely. That is a variant of packed attestation called a self-attestation.

Self-attestation
Regular credential creation in WebAuthn does not involve the newly created pri-
vate key signing anything. Thus, when a credential is created, there’s no proof that
the entity submitting the new credential actually holds the private key, and thus
it’s possible to submit someone else’s public key as your own.

This does not obviously cause any problems in WebAuthn but the standard solution
is a “self-signature” and self-attestation provides this. It is a packed attestation, as
described above, where there is no x5c key in the attestation statement, and the
public key used to validate the attestation signature is the newly-created credential
public key. The signature shows that the private key was involved in the creation.

However, self-attestations are not really attestations! They claim nothing about how
the private key was generated nor where it is stored. They simply reuse some of the
mechanisms. Because of this, self-attestations are rarely encountered.

Other attestation formats
There are several other, less common attestation formats. If you are building a We-
bAuthn deployment and come across an unexpected attestation fmt, you may be
able to find details in this section3 of the WebAuthn spec. Hopefully now that you
understand the broad shape of attestation, the specification will be easier to under-
stand.

Enterprise attestation
None of the attestations above identify an individual security key, otherwise it
would be possible to track a specific security key as it was used on different web-
sites and in apps. However, if you are a company purchasing security keys for your
employees, you might legitimately want to be able to individually track these secu-
rity keys.

64 AT TESTATION

There is one straightforward way to do that, which is to pre-create credentials on
the security keys before distribution. This is a viable solution in many cases but it
does not always work so, for the exceptions, CTAP2 and WebAuthn define a con-
cept of enterprise attestation, where the attestation certificate individually identifies
a specific security key for inventory tracking purposes.

If this simply replaced the standard attestation certificate, that would cause all of
the privacy problems outlined above. So an enterprise attestation certificate is in
addition to a regular attestation certificate and requests have to be authorized to
use it. Security keys with enterprise attestation must also be specially purchased
from the vendor.

There are two ways that enterprise attestation can be authorized for a specific re-
quest:

1. The platform communicating with the security key can be configured to autho-
rize the use of enterprise attestation for certain relying party IDs.

2. The security key itself can recognize specific relying party IDs and use enterprise
attestation when credentials are created for them.

In both cases the WebAuthn create request has to request enterprise attestation
by setting the attestation parameter to enterprise. If the security key has an
enterprise attestation certificate, and if the request meets at least one of the two
requirements above, then the enterprise attestation certificate will be returned (and
the corresponding attestation private key will be used to sign the attestation).

Implementation in CTAP2
When a request specifies enterprise attestation, the platform will consider whether
its configuration specifies that the relying party ID from the request is authorized
to receive it. The mechanism of this configuration is specific to the platform but,
for Chrome/Edge, the policy is called SecurityKeyPermitAttestation4.

If, by whatever mechanism the platform uses, the relying party ID is autho-
rized, then the platform will send an extra ep parameter with the CTAP2
authenticatorMakeCredential command, and will give it the value 2. This informs
the security key that the platform believes that the request is authorized to use any
enterprise attestation certificate that the security key may have configured.

Otherwise, the platform sends the value 1, which informs the security key that en-
terprise attestation has been requested, but the platform policy doesn’t authorize
it. Still, the security key itself may recognize the relying party ID and decide to use
enterprise attestation.

The security key is always free to decide that it doesn’t want to return enterprise
attestation for any request, and the feature is disabled by default and must be ex-

AT TESTATION 65

plicitly enabled with an authenticatorConfig command after purchase, and after
each reset (see page 57). The presence of the ep field in the authenticatorGetInfo
response indicates that enterprise attestation is supported by a security key, and its
value indicates whether it is currently enabled.

The enterprise attestation signature signs the authenticator data. When consider-
ing the output of extensions (see chapter 9), a server may need to extract exten-
sion outputs directly from the authenticator data where possible, rather than use
the browser’s reflection of them in the PublicKeyCredential object, in order to
ensure that it’s getting authentic extension results. This is most applicable to the
minPinLength extension (see page 83).

1 fidoalliance.org 2 www.w3.org 3 w3c.github.io

4 chromeenterprise.google

66

CHAPTER 8

WebAuthn on the web

Chapter 4 covered the core of WebAuthn, which is reflected in the platform-specific
APIs detailed in chapter 11. However there are several aspects of WebAuthn that
are specific to operating on the web. This chapter covers those parts.

Feature detection
Nothing works unless WebAuthn is available in the browser. While WebAuthn is
very widely supported now, there are still contexts (such as WebViews) where sup-
port might be lacking. To check whether WebAuthn is available, test for the exis-
tence of window.PublicKeyCredential:

if (!window.PublicKeyCredential) {
 ∕∕ WebAuthn is not available in this context.
}

Platform authenticator detection
If WebAuthn is available then sites can silently detect whether a platform authen-
ticator that supports user verification exists:

const promise = window.PublicKeyCredential.
 isUserVerifyingPlatformAuthenticatorAvailable();
promise.then((hasUVPlatformAuthenticator) => ..., (error) => ...);

Sites would typically check this before proactively prompting users to create a cre-
dential. Users may wish to use security keys, so the option to create a credential
should still appear in the account settings, but it is unwise to try and upsell the user
unless this promise resolves with true.

Conditional UI
Hopefully there will come a day when WebAuthn dominates the authentication
landscape and sites just have a sign-in button that starts a WebAuthn flow. But to-
day that is not the case.

Today, most users recognize a pair of text boxes as the way that they start a sign-
in process, and they may well be used to their password manager auto-filling their
username and password into them. Conditional UI is a way for that autofill to also
include WebAuthn credentials.

The way it works is that a page can make a navigator.credentials.get call and
pass mediation: "conditional" in the top-level dictionary. (So at the same level

WEBAU THN ON THE WEB 67

as publicKey, not inside the assertion options.) That will cause the request not to
show a modal UI, but instead the returned promise will hang around, unresolved.

const abortController = new AbortController();
const promise = navigator.credentials.get({
 ∕∕ The `requestOptions` are the same as for a regular request.
 publicKey: requestOptions,
 mediation: 'conditional',
 signal: abortController.signal,
});
∕∕ `promise` may not ever resolve but, if it does, it'll return a
∕∕ `PublicKeyCredential`, just like a regular `get()` call.

The contract with the browser is that it may present WebAuthn as an option to
the user in whatever unobtrusive manner that it wishes. Currently, that means that
credentials can be offered in autofill for fields that have webauthn as the final auto-
complete token:

<input type="text" name="username" autocomplete="username webauthn">

If the user selects a WebAuthn credential from the browser’s autofill menu then any
needed user verification will be completed and the promise from the conditional
request will be resolved. The Javascript for the page is then responsible for sending
the assertion to the server and getting the user signed in.

Before starting a conditional request, check that the browser supports them: (Other-
wise the mediation parameter will be ignored and the call will trigger a modal UI.)

if (PublicKeyCredential. isConditionalMediationAvailable) {
 const promise = PublicKeyCredential.
 isConditionalMediationAvailable();
 promise.then((isSupported) => ..., (error) => ...);
}

A conditional request should be made as soon as possible after page load because
credentials won’t appear in autofill unless a conditional request is pending to re-
ceive the resulting credential.

Mixing modal and conditional requests
A page may well use conditional UI and also have a “Sign in with passkey” button
that triggers a modal request. However, only one WebAuthn request can be out-
standing at any given time. So if the conditional request is hanging, waiting for a
possible credential from autofill, trying to make a regular request in response to the
user clicking on the button will fail immediately.

Instead, conditional requests need to be aborted before the modal request can
be started. In the example above, the conditional request also took a signal para-
meter. This allows an AbortController1 to abort a conditional request by calling

68 WEBAU THN ON THE WEB

abortController.abort() and waiting for the promise from the conditional re-
quest to fail. Then another WebAuthn request can be started.

If the modal request fails, then you need to restart the conditional request; other-
wise credentials won’t appear in autofill after the user clicks the button.

The challenge of challenges
Conditional UI makes generating the challenge parameter in the request more,
well, challenging. This is also the case with the prefer Immediately Available -
Credentials option to the platform APIs that we’ll cover in chapter 11.

Recall that the properties that we want of a challenge are that:

1. It has never been used before, so no previous signature can be reused for the
current request.

2. It is unpredictable, so that an attacker with temporary access cannot generate
signatures that will be valid in the future.

The ideal way to meet these requirements is to generate a random challenge at the
server, record it, and check against it when the signature is received. But conditional
requests want to be started as soon as possible after page load. Any delay to fetch
a challenge is a problem. This is also the case with mobile apps that want to show
the option to sign in as soon as the app is opened.

With conditional UI, the challenge can be dynamically embedded in the page con-
tents to avoid making a separate request for it. But this isn’t applicable when open-
ing an app because that is a purely local operation.

Conditional UI challenges also have a second tension (which the app case doesn’t)
because the signature from a conditional request could come days later. How long
does the server have to store session information for the possibility that a page load
is still in a tab somewhere, waiting for the user to sign in?

The best answer for these issues is probably a feature that doesn’t exist at the time
of writing but which has been proposed: a challengeUrl parameter as an alterna-
tive to the challenge parameter. This would specify a URL from which a challenge
can be downloaded at the point that one is needed. For conditional UI, the challenge
wouldn’t be downloaded until the user has selected a credential and the signing
operation is ready to happen. For apps, fetching the challenge could happen con-
currently with showing UI to the user, thus minimizing latency.

An alternative that is often suggested is encrypted timestamps; i.e. distribute a
stateless service around the world (to minimize latency) that encrypts and returns
a timestamp on demand to serve as a challenge. When validating signatures, the
timestamp can be decrypted and checked to be reasonably recent.

WEBAU THN ON THE WEB 69

On the plus side, this avoids needing storage and can make latency acceptable. But
there are several drawbacks. Firstly, it limits replay but doesn’t prevent it. The ex-
tent that replays are possible is bounded by how old a received challenge is allowed
to be. If it’s just a few minutes, perhaps you deem that acceptable, but larger win-
dows are progressively more concerning. Thus any conditional UI requests need to
be restarted frequently.

Second, it would also obviously be bad if the encryption key leaked. Public-key
cryptography doesn’t help here because, in order for future valid challenges to be
unpredictable, it mustn’t be possible for an attacker to generate a valid encrypted
timestamp. Thus public-key cryptography shouldn’t be used because public keys
are assumed to be public, and making non-standard assumptions of cryptosystems
is usually disastrous.

Conditional create
If a user is already using a password manager to store a password for a site it would
be great if that password manager would just start storing a passkey instead. That’s
why browsers increasingly support setting mediation: "conditional" on create
calls. This requests that a passkey be automatically created, i.e. without the user
having to confirm or present any biometrics.

Before attempting this, check whether the browser supports conditional create calls:

if (window.PublicKeyCredential &&
 window.PublicKeyCredential.getClientCapabilities) {
 window.PublicKeyCredential.getClientCapabilities().then(
 (capabilities) => {
 if (capabilities.conditionalCreate ?? false) {
 attemptConditionalCreate();
 }});
}

Since conditional creation doesn’t involve any confirmation UI, the user pres-
ence and user verification bits in the resulting authenticator data will both be
false. Thus, the request should set authenti cator Selection. user Verifi cation to
discouraged.

A site can technically attempt to conditionally create a passkey at any time. How-
ever, passkey providers will impose requirements before doing so. They will likely
require that they already have an account with the same username to confirm that
the user is happy storing that credential. They may also require that the password
has been recently filled to try and confirm that any saved password is valid. Because
of these requirements, the correct time to attempt a conditional create is immedi-
ately after a user has signed in using a password.

70 WEBAU THN ON THE WEB

If the conditional creation attempt is rejected, the promise will fail immediately
with a Not Allowed Error.

(Conditional creation may also be available in platform APIs. See chapter 11.)

iframes
WebAuthn works without fuss in iframes that are same-origin with the main frame.
But when people ask about iframes, they usually mean cross-origin iframes. We-
bAuthn get requests do work in cross-origin iframes, but the parent frame has to
grant permission for the iframe to make that call. To do so, use the permissions
policy framework:

<iframe src="..." allow="publickey-credentials-get">

Chromium-based browsers also allow create calls within cross-origin iframes.
Again, the parent frame has to grant permission, this time with the publickey-
credentials-create permission. At the time of writing, Safari does not allow this,
however.

JSON conversion
Ideally, WebAuthn requests would be created in your backend and sent to the
frontend to be performed by the browser. But because WebAuthn requests and re-
sponses contain ArrayBuffers, which can’t be expressed in JSON, this is not as easy
as it should be.

Thus dedicated JSON conversion functions were added to WebAuthn. These func-
tions are aware of the WebAuthn structures and, wherever an ArrayBuffer is
needed, accept a base64url-encoded string instead.

Here’s an example WebAuthn registration converted to JSON by taking all Array-
Buffers and base64url encoding them:

createJSON = `
{
 "challenge": "cmFuZG9tIGNoYWxsZW5nZQ",
 "rp": { "id": "example.com", "name": "example.com" },
 "user": {
 "id": "dXNlcmlk",
 "name": "name",
 "displayName": "displayName"
 },
 "pubKeyCredParams": [{"type": "public-key", "alg": -7}],
 "authenticatorSelection": {
 "requireResidentKey": true,
 "authenticatorAttachment": "platform"
 }
}`;

WEBAU THN ON THE WEB 71

A browser with support for these JSON functions will accept the following to trig-
ger a creation request:

navigator.credentials.create({
 publicKey: window.PublicKeyCredential.parseCreationOptionsFromJSON(
 JSON.parse(createJSON)),
}).then(console.log, console.log);

The static parse Creation Options From JSON method on window. Public Key -

Credential takes a parsed JSON object and converts it to a WebAuthn creation re-
quest. Similarly, Public Key Credential. parse Request Options From JSON also exists
for assertion requests.

Once a promise has resolved with a Public Key Credential object, there’s also a
function to convert it to JSON for sending back to the server:

JSON.stringify(pubKeyCred.toJSON());

That results in JSON string where, again, all ArrayBuffers have been encoded as
base64url strings.

To test whether a browser supports these functions, do:

if (window.PublicKeyCredential.parseCreationOptionsFromJSON) {
 ∕∕ JSON functions supported.
}

These JSON formats are also used by the Android platform APIs (see page 96) and
so it’s possible for a backend to generate WebAuthn JSON objects that will trans-
parently work for both web and Android clients.

Testing
WebAuthn involves interacting with security keys or local biometric sensors. These
are all things that make automated testing very challenging. However, browsers
can implement a virtual authenticator—a fake WebAuthn authenticator that skips
showing any UI, but which creates credentials and generates signatures like any
other.

Chromium-based browsers can add a virtual authenticator to a tab for when differ-
ent types of security keys aren’t available for manual testing, or for when a platform
authenticator isn’t available (although that’s rare these days). To do so, find “We-
bAuthn” under “More tools” in the developer tools, check the option to enable the
environment, select the configuration of the virtual authenticator, and click “Add”.
WebAuthn requests will now use the virtual authenticator and the state of the au-
thenticator appears in the developer tools pane.

72 WEBAU THN ON THE WEB

It’s also possible to do completely automated tests with a virtual authenticator by
configuring it using WebDriver2. See the WebDriver section3 of the WebAuthn spec-
ification for more details.

1 developer.mozilla.org 2 developer.mozilla.org 3 www.w3.org

73

CHAPTER 9

Extensions

Recall from chapter 4 that WebAuthn accepts an extensions parameter when creat-
ing or asserting a credential. These parameters are dictionaries mapping extension
names to extension-specific inputs. When an operation completes successfully, the
resulting PublicKeyCredential has a getClientExtensionResults method that re-
turns a dictionary mapping those same names to the extension’s outputs.

This extension mechanism allows a number of non-core features to be cleanly added
to WebAuthn and several of them are covered in this chapter, along with descrip-
tions of how they are implemented for security keys.

To save reading this whole chapter just to discover whether any of these extensions
are useful to you, here’s a quick summary of what each does:

Extension Use

credProps Learning whether a newly created credential is discov-
erable or not

PRF Getting secret keys for encrypting data

credProtect Setting a minimum security bar for credentials kept on
security keys

credBlob Storing 32 bytes of data with a credential

minPinLength Checking that company PIN-length requirements are
being enforced

largeBlob Storing certificates for offline operation of a security
key

appId / appIdExclude Backwards compatibility with credentials created via
the U2F web API

Extensions are processed by the platform or browser and some of them, like
credProps don’t involve any explicit work by the authenticator or security key.
For others, the extension is forwarded entirely to the authenticator for processing.
There is also a third class of extensions where the authenticator is involved in the
processing of the extension, but the platform also has to do work.

74 EXTENSIONS

In all cases, the results are returned via getClientExtensionResults. Even for ex-
tensions that are entirely processed by the authenticator, the platform will gener-
ally take the authenticator’s output and rewrite it into a JavaScript object to include
there.

If you are using attestation (see chapter 7) then you need to consider that the plat-
form’s output is not signed by the attestation private key. So for each extension
used, you need to decide whether your implementation will extract the extension
output from the returned authenticator data instead—which is signed. This is not
always possible, for example with the prf and largeBlob extensions, but sometimes
it’s nonsensical not to, for example with the minPinLength extension.

Attestation is not commonly used and most implementations do not need to
worry about this.

credProps
Recall from chapter 4 that the authenticatorSelection field of the creation para-
meters lets you specify residentKey as preferred. (And recall that a “resident key”
is a historical name for a discoverable credential.)

If you configure that, credProps is the way that you learn whether a discoverable
credential was actually created or not. To request this information, set this exten-
sion in the creation options:

options.extensions = {credProps: {}};

Then there are three possible outcomes in a successful response:

• The extension isn’t supported: the credential probably isn’t discoverable if it was
created on a security key, but we don’t know.

• The extension is supported, but the discoverability isn’t reported. (With some se-
curity keys the platform can’t know whether a credential is discoverable or not.
Rather than guess, it’ll say nothing at all.)

• The credential explicitly is (or isn’t) discoverable.

These possibilities can be extracted from the resulting PublicKeyCredential object
like this:

const extensionOutputs = credential.getClientExtensionResults();
const hasCredProps = 'credProps' in extensionOutputs;
if (!hasCredProps) {
 ∕∕ Platform doesn't support the extension.
 return "probablynot";
}
const propertyReported = 'rk' in extensionOutputs.credProps;

EXTENSIONS 75

if (!propertyReported) {
 ∕∕ The platform doesn't know whether the authenticator used creates
 ∕∕ discoverable credentials or not.
 return "probablynot";
}
return extensionOutputs.credProps.rk ? "yes" : "no";

PRF
A pseudo-random function (PRF) is a cryptographic abstraction that approximates
a random oracle. A random oracle is a function that takes an arbitrary byte-string
input and produces a fixed-sized output. It works like this:

Conceptually, the oracle contains a table mapping inputs to outputs that starts off
empty. Each time the oracle is evaluated, it looks in its table to see whether the
input has been seen before. If so, it returns the corresponding output from its table.
Otherwise, it generates an output uniformly at random, records it in its table, and
returns it.

As an example, we start off with an oracle with an empty table, and we evaluate it
on the input “apples”. The table is empty, so “apples” isn’t in it, and so the oracle
generates a random output, records it, and returns it.

Next, we evaluate it on the input “bananas” and the same thing happens. (Although
the output, being randomly generated, will be different with very high probability.)

Finally, we evaluate it on “apples” again. This time “apples” is in its table, and it so
returns the same output as it did the first time we evaluated it.

If you built such a function, that would be an ideal random oracle. But storing the
table is problematic so, instead, PRFs approximate a random oracle by using func-
tions like HMAC-SHA256. They are computationally indistinguishable from a ran-
dom oracle but, by using a hash function, do not require storing all the input and
output pairs.

The result of all this theory is that attaching a PRF to a credential allows you to
derive an unlimited number of secret keys from it. These secret keys can be used
for whatever you want, but encrypting data is the most common use.

The prf extension to WebAuthn lets you attach a PRF to each credential. The PRF
is credential-specific and can only be evaluated when the credential is created or
asserted. During each operation the PRF can be evaluated on up to two inputs in
order to support key rotation.

To use the prf extension with a credential, it should be requested at creation time.
(It is possible for authenticators to support PRF evaluation at assertion time even

76 EXTENSIONS

when it wasn’t configured at creation time, but this is authenticator-specific behav-
ior and can’t be depended upon.)

To request PRF support during credential creation, just create an empty extension:

options.extensions = {prf: {}};

In the resulting PublicKeyCredential, see whether PRF was supported:

const extensionOutputs = credential.getClientExtensionResults();
const hasPrf = 'prf' in extensionOutputs &&
 extensionOutputs.prf.enabled === true;

Unlike capabilities such as user verification, there is no way to express that the
PRF extension is required, so the possibility that an authenticator doesn’t support
it must always be handled.

It’s also possible to opportunistically evaluate the newly-created PRF during the
creation operation. (Because security keys can’t support this, this is not guaranteed
to succeed.)

options.extensions = {prf: {
 eval: {
 first: new Uint8Array([1,2,3,4]),
 second: new Uint8Array([5,6,7,8]),
 },
}};

The PRF can be evaluated at two inputs, as shown above, but second is optional if
you don’t need that ability.

The outputs will always be 32 bytes long and are in the results member of the
extension outputs if supported:

const extensionOutputs = credential.getClientExtensionResults();
const hasPrf = 'prf' in extensionOutputs &&
 extensionOutputs.prf.enabled === true;
const hasOutputs = hasPrf && 'results' in extensionOutputs.prf;
if (hasOutputs) {
 const output1 = extensionOutputs.prf.results.first;
 const output2 = extensionOutputs.prf.results.second;
}

The same code works at assertion time except that there will always be PRF results
if hasPrf was true at creation time.

But at assertion time, there might be multiple credential IDs listed in
allowedCredentials and the PRF of each may need to be evaluated at different in-
puts depending on which credential was used. If that’s the case, evalByCredential
can be set instead of eval.

EXTENSIONS 77

options.extensions = {prf: {
 evalByCredential: {
 "Y3JlZGVudGlhbElEMQ": {
 first: new Uint8Array([1,2,3,4]),
 second: new Uint8Array([5,6,7,8]),
 },
 "b3RoZXJJRA": {
 first: new Uint8Array([4,3,2,1]),
 second: new Uint8Array([8,7,6,5]),
 },
}};

The keys in evalByCredential are base64url-encoded credential IDs. It can
only be used if allowCredentials is non-empty and every credential ID
listed in evalByCredential must be present in allowCredentials. If both
evalByCredential and eval are both set then the former will be used for any cre-
dential ID listed in it, with eval used as the fallback for any other credentials.

Choosing the inputs
As a general rule, one shouldn’t use the same secret key for multiple purposes. So,
if you’re using a PRF output to encrypt data with AES-GCM, and then you later
switch to a different algorithm, you should use a different key obtained from a dif-
ferent PRF input.

However, that doesn’t exclude the possibility that a service uses the same
PRF input globally for all users. For example, you could always use new
TextEncoder().encode("user data encryption key").buffer as the sole PRF in-
put.

A worry with that design would be that, if an attacker were ever to be able to re-
quest an assertion with your RP ID, then they could get that secret key for a specific
credential. Thus a step up from that design is to have random, per-user PRF inputs
that an attacker would struggle to obtain: even if the attacker were able to request
an assertion somehow, they would not know what input to use to get the secret key.

A further step up is to be continually rotating the secret key, which is why it’s pos-
sible to evaluate the PRF at two different inputs each time.

In this design, in addition to a per-user PRF input, each account also has a second,
random PRF input that is “pending”. The PRF is then evaluated for both inputs and
the data can be decrypted with the secret key from the first evaluation and then
re-encrypted with the secret key from the second. Then the second PRF input be-
comes the primary one and the server generates a new “pending” input for the next
rotation.

78 EXTENSIONS

In this case, even if the server’s database of PRF inputs leaked, it would rapidly and
automatically become out of date.

The decision of which style of PRF evaluation makes sense for a given service has
to be made in light of the security needs of that service. Each additional step adds
a meaningful amount of complexity and so there’s no uniformly applicable advice
about which is appropriate.

Input hashing
PRF inputs from WebAuthn, and WebAuthn-like APIs, are prefixed with the string
"WebAuthn PRF", followed by a zero byte, and hashed with SHA-256 before being
used. This means that there are two layers of “access” to the PRF. An API that allows
PRF inputs to be specified without hashing has more authority than WebAuthn,
because it can evaluate the PRF at all the inputs that WebAuthn can, plus it can
evaluate the PRF at inputs that WebAuthn cannot express.

PRF inputs sent over CTAP2 and hybrid (the protocol used between computers
and phones) are already hashed. So applications that have direct CTAP2 access can
choose to use PRF inputs that are inexpressible in WebAuthn. But this also causes
problems when CTAP2 requests are sent over hybrid and need to be translated back
into WebAuthn-like requests, because the hashing of PRF inputs cannot be undone.
Thus credential providers on Android might see a prfAlreadyHashed extension. See
page 90.

Implementation in CTAP2
The prf extension is implemented for security keys by using a different extension:
hmac-secret; security keys don’t implement prf directly.

When creating a credential, the hmac-secret extension only takes a boolean para-
meter to specify whether HMAC support is requested or not. Because of this it’s
not possible to evaluate any PRFs at creation time when using a security key, and
that’s why creation time evaluation is optional in WebAuthn.

At assertion time, in order to protect data when it is on the USB bus, or transmitted
to an NFC security key, the PRF inputs and results are encrypted using the same
Elliptic Curve Diffie–Hellman derived key as described in the section on user veri-
fication. (See page 55.)

Those hmac-secret inputs simply specify the input(s) for evaluation, i.e. there
is no equivalent of WebAuthn’s evalByCredential field. So to implement
evalByCredential with security keys, platforms have to probe the possible creden-
tials from allowCredentials to find a match, and only then select the PRF inputs
for the final authenticatorGetAssertion command.

EXTENSIONS 79

The hmac-secret extension also defines that two PRFs are created per credential.
Which PRF is used is determined automatically based on whether user verification
was done for a request. These dual PRFs are not exposed through WebAuthn, how-
ever. Rather, WebAuthn defines that when two PRFs are present in an authenticator,
the user verification PRF must always be used. Thus, if a WebAuthn request includes
PRF evaluation, user verification will be done with security keys if they support it,
irrespective of the userVerification parameter in the WebAuthn request itself.

Because the prf extension is implemented this way on security keys, you’re actu-
ally able to see hmac-secret appearing in the authenticator data when getting an
assertion. We can take a look at the authenticator data from a security key opera-
tion after requesting a PRF evaluation:

Hash of RP ID
26bd7278be463761f1faa1b10ab4c4f82670269c410c726a1fd6e05855e19b46
Flags: ED + UV + UP
85
Signature counter
00000023
Because the ED flag is set, the remainder is extension data.
This is CBOR-encoded.
a16b686d61632d7365637265745840a2
0f1e5cd69d341c5e98fe1f2e90834a10
d1df55f835f45e69f2e53650bc3c579a
08d3919308582656a4658c876d1521f6
d703a63a55db81ad9c64b94808a454

The CBOR-encoded extension data decodes as {"hmac-secret":

h'A20F1E5CD69D341C5E9...'}. The payload is 64 bytes long because two PRF inputs
were sent, and two 32-byte outputs thus require 64 bytes. The result is encrypted
with an ephemeral key that isn’t accessible outside of the platform/browser, so nei-
ther Javascript nor the server can learn anything about the PRF results from this.
It’s mentioned here to connect different concepts rather than for any practical use.

credProtect
Security keys can get lost. If someone picks up your lost security key in the car
park, how much can they learn about you?

They have physical access to the security key, so they can send authen ticator Get -
Assertion commands to it and query for discoverable credentials associated with
any RP ID. Should security keys better protect this information?

Perhaps, but maybe you also want to use a security key like an access card, where
you tap it on an NFC reader and a door unlocks for you. That inherently requires
that the security key disclose the existence of credentials to any NFC reader that
gets close to it.

80 EXTENSIONS

The credProtect extension exists to let the privacy level of a credential be specified
at creation time. It only applies to security keys, since phones and laptops have
screen locks to protect the information on them already.

Security keys may disclose the existence of a discoverable credential, its cre-
dential ID, and its user ID without user verification being performed. But they
never disclose the user name or user display name without it. That’s why We-
bAuthn says that the user ID should not contain identifiable information.

There are three levels of credential protection:

• “userVerificationOptional”: a credential’s existence may be disclosed.
• “userVerificationOptionalWithCredentialIDList”: a credential’s existence may be

disclosed only if user verification is done, or if a request specifies its credential ID.
• “userVerificationRequired”: a credential’s existence may not be disclosed without

user verification.

If you want to use a credential like an access card then it must use “userVerifica-
tionOptional”. Otherwise, you might want a more restrictive value. Security keys
can enforce a higher level of privacy for all credentials, but most don’t.

Tucking this away into an extension is a little obscure and so some platforms will
set a higher default. Chromium (and thus Chrome and Edge) will default to at
least “userVerificationOptionalWithCredentialIDList” whenever a WebAuthn cre-
ation request requires or prefers a discoverable credential.

Additionally, if a discoverable credential is required, and userVerification is set
to preferred (which is the default in WebAuthn), then Chromium will set the cred-
Protect level to “userVerificationRequired”. This protects users when a site accepts
both user-verified and non-verified assertions. That’s a reasonable thing to do in
the context of a platform authenticator where access is protected by a screen lock,
even if user verification isn’t done for a specific assertion. But with a security key,
a discoverable credential with optional user verification may mean that finding a
lost security key grants immediate access to the owner’s accounts.

We can observe this happening because the security key will echo the credProtect
setting in the authenticator data. When inspecting the authenticator data from a
creation request made in Edge with requireResidentKey set, we see the ED (Ex-
tension Data) flag set. After skipping over the attested credential data, the exten-
sions decode as the following CBOR map: {"credProtect": 3}. So Edge has set this
extension for us, based on the parameters. The value “3” corresponds to “userVeri-
ficationRequired” as, over CTAP2, the three protection levels are simply numbered
1, 2, and 3.

EXTENSIONS 81

A WebAuthn request can overwrite these defaults if it wishes:

options.extensions = {
 credentialProtectionPolicy: "userVerificationOptional",
 enforceCredentialProtectionPolicy: false,
}

The enforceCredentialProtectionPolicy can be set to true to require that a cre-
dential only be created if the specified protection policy can be implemented. So it
excludes security keys that don’t implement the credProtect extension. (For this
purpose, platform authenticators are always considered to be sufficiently privacy-
preserving.)

After setting the extensions shown above, and doing a creation in Edge, the result-
ing extensions in the authenticator data decode as {"credProtect": 1}. So indeed,
the explicit extension overrode the defaults.

credBlob
The credBlob extension allows at least 32 bytes of arbitrary data to be stored with
a credential. The data is set once, when the credential is created, and can be read
when it’s asserted. At the time of writing no platform authenticators implement
this, only some security keys.

To attempt to set a blob, just set the extension to an ArrayBuffer containing the
blob’s data:

options.extensions = {
 credBlob: new TextEncoder().encode("credBlob contents").buffer,
}

If the contents of the blob are sensitive, combine this extension with
credProtect to ensure that user verification is required for the credential to
be asserted.

Just because this extension was set doesn’t mean that the security key supports
storing a blob, so the extension results have to be checked after a successful creation
to see whether the blob was stored:

const extensionOutputs = credential.getClientExtensionResults();
const credBlobStored =
 'credBlob' in extensionOutputs &&
 extensionOutputs.credBlob === true;

Later, when asserting the credential, the credBlob data can be requested:

options.extensions = { getCredBlob: true };

82 EXTENSIONS

And the contents, if any, will be found in the extension outputs:

const extensionOutputs = credential.getClientExtensionResults();
let credBlob = 'getCredBlob' in extensionOutputs ?
 (new TextDecoder().decode(extensionOutputs.getCredBlob)) :
 undefined;

(TextEncoder and TextDecoder are used here only for illustration. The contents of
a credBlob can be arbitrary binary data.)

However, this extension is not suitable for storing secret keys because the contents
end up in the authenticator data, which has to be sent to the server for the asser-
tion signature to be validated. If we look at the authenticator data that resulted
from the assertion request above, the extensions within decode as {"credBlob":
h'63726564426C6F6220636F6E74656E7473'}, and that hex string is the UTF-8 en-
coding of “credBlob contents”. Not very secret! To store secret keys, use the PRF
extension (see page 76).

minPinLength
This extension requests that a security key report its configured minimum PIN
length. In an enterprise environment, this can be used to enforce that a minimum
length policy is in effect for all created credentials.

The minimum PIN length can be configured on some security keys using the
authenticatorConfig CTAP2 command (see page 57). The minimum can be raised
but cannot be reduced without resetting the security key, which erases all creden-
tials. So the minimum length reported during credential creation will be in effect
for the lifetime of that credential.

To request that the minimum PIN length be reported during a credential creation,
just set the minPinLength extension:

options.extensions = { minPinLength: true };

The minimum will only be reported if the RP ID has been previously configured
via the authenticatorConfig command. The result can be found in the extensions
block of the authenticator data under the key minPinLength. The result must be
taken from the authenticator data because this extension typically has to be com-
bined with attestation (see chapter 7) to meet compliance requirements, and only
the authenticator data is signed by the attestation private key.

largeBlob
Sometimes the entity that creates a credential is not the entity that verifies asser-
tions from it, and communication between those two entities may be difficult or
impossible. The classic case for this are air-gapped systems, where authority to ac-

EXTENSIONS 83

cess them may be issued centrally, but has to be checked by a system that cannot
communicate with that central authority.

Typically the central authority will sign a public key with a certificate. The certifi-
cate specifies what the holder of the corresponding private key is permitted to ac-
cess. Such a private key can be stored in a security key, but where are we going to
put the certificate? That’s what the largeBlob extension is for.

Keep in mind that while this extension does have the word “large” in the name,
security keys are embedded devices and the term is relative. The amount of storage
available on a security key that supports this extension is only guaranteed to be
1024 bytes.

A largeBlob can only be read and written during assertions, meaning that it cannot
be written during creation. But you don’t get the public key to put in the certificate
until the creation is complete, so that shouldn’t be a constraint.

You won’t see largeBlob appearing in the authenticator data extensions. Given the
size, the implementation in security keys is a bit more complex than that.

Security keys that support largeBlob expose a single storage extent to the platform.
That storage can only be read or written completely, albeit in a streaming fashion to
satisfy message buffer limits. The largeBlob values for every credential on the se-
curity key have to fit within that storage and the platforms perform a read/update/
write pattern in order to update any part of it.

The storage extent is formatted as a CBOR array by the platforms. Each element
of the array is a CBOR map that contains a compressed and encrypted largeBlob
value. The encryption key is returned by the authenticator when a credential is as-
serted, thus, while platforms can read the security key’s storage at will, they cannot
learn the contents of a largeBlob without its corresponding encryption key, which
requires them to have successfully asserted the credential. If credProtect is set on
the credential (see page 80) then the platform can be required to know the creden-
tial ID, or to complete user verification, before that occurs.

The largeBlob storage does not include any credential IDs because doing so would
render credProtect’s “userVerificationOptionalWithCredentialIDList” policy moot.
Instead platforms trial-decrypt each element of the CBOR array in order to find the
correct largeBlob entry for a credential once they have the key.

Platforms can, however, always see the number of largeBlobs stored by a security
key, and their compressed and uncompressed sizes.

appId / appIdExclude
Before WebAuthn existed there was a U2F web API. Firefox supported it and
Chrome shipped a hidden, internal extension by which it could be polyfilled. It has

84 EXTENSIONS

long been deprecated but had meaningful usage while it existed. It had an equiva-
lent of relying party IDs called AppIDs, but AppIDs were origins, rather than do-
main names.

When WebAuthn was introduced, sites that had used this U2F API faced a prob-
lem. All the credentials that they had registered were associated with AppIDs, like
https:∕∕example.com. But WebAuthn used RP IDs, like example.com. Those two
strings are different and so security keys would consider them distinct, forever
making all AppID-based credentials inaccessible to WebAuthn. That would block a
transition to WebAuthn.

The appId extension exists so that sites can express that they may also have cre-
dentials registered to an AppID. The value of the extension is the AppID that they
used, and platforms have to validate that they can request that AppID, similar to
how they have to validate RP IDs.

When doing an assertion that contains an appId extension, platforms will check for
any credentials that match an ID from the allowCredentials list, and then check
all those IDs again using the given AppID.

This gets complex when doing user verification with a PUAT (see chapter 6) be-
cause using a PUAT will bind it to the RP ID or AppID requested. Naively, platforms
would have to request two PUATs, and get the user to complete user verification
twice. However, any credential created with an AppID must have been created with
the old U2F web API. That API didn’t support user verification and didn’t support
credProtect, therefore any credential with an AppID can be probed without user
verification. So platforms actually probe for each credential ID with the AppID first,
and then probe for each ID again with an RP ID and with the PUAT.

The appIdExclude extension has the same shape but applies at creation time. It
specifies that one or more of the credential IDs in excludeCredentials may have
been created with an AppID rather than an RP ID. The processing complexity is
similar.

At this time, these extensions are only of historical interest because they are only
useful if a site needs compatibility with credentials created with the old U2F web
API. The set of sites that ever used that API is small, and no new site will ever have
had an AppID. But these extensions are mentioned here because they appear in
modern API references, and so they should be explained.

85

CHAPTER 10

Hybrid transport

Security keys are great, but realistically regular people are not going to carry one
around with them. But people do carry around their phones. Wouldn’t it be great
if a phone could work like a security key?

That’s what the hybrid transport is for. It allows phones or tablets to communicate
with laptops and desktops in a way that shows that they are physically proximal.
The evidence of proximity is the key factor here: there are plenty of “sign in by
scanning this QR code” schemes in use today that simply work across the internet,
and they’re phishable. An attacker can request a sign-in QR code from the legiti-
mate site, display it on their own site and, if they can persuade a user to scan it with
their phone, that user will be authorizing the attacker’s computer.

In contrast, a security key requires that a computer be physically connected to its
USB connector, or within NFC range, thus no remote attack is possible. (Unless the
computer itself is compromised.)

Sadly, NFC is rare on laptops, but Bluetooth support is common. Could we have
the phone and laptop communicate via Bluetooth to ensure proximity? Unfortu-
nately this didn’t turn out to be practical. Measurements of this scheme in the real
world showed an unacceptably high rate of Bluetooth communication failures. But
broadcasting a single Bluetooth message from the phone to establish proximity, and
running the rest of the communication over the internet, did work acceptably well.
This scheme was called “hybrid1” (Bluetooth + internet).

During development, this transport was called caBLE, for Cloud Assisted Blue-
tooth Low Energy. That was a cute name, but calling a wireless protocol “ca-
BLE” caused some confusion and thus it was changed. But you might still see
the old name hanging around as caBLE reached version 2.1 before being re-
named.

How it works
The device making a WebAuthn request, usually a laptop, will display a QR code
if it wants to use the hybrid transport. That QR code contains a CBOR map that
contains the following values:

• A public key for the laptop.
• A secret key, so that the phone can prove that it has seen the QR code.

86 HYBRID TRANSPORT

• Whether the request is to make a credential, or to get a signature, so that the
phone can show a specific message when scanning the QR code.

If the user scans the QR code and triggers the operation on the phone, then the
phone connects to its tunnel service. This is some service on the internet that is
willing to relay messages between laptops and phones as part of this protocol. It’s
run by whomever is implementing the phone side of the protocol, so iPhones use
a tunnel service operated by Apple and Android phones (at least if they’re using
Google’s Play Services) use one operated by Google. The phone asks the tunnel
service to wait for a connection from the laptop which will be identified by a long,
random ID.

Then the phone starts broadcasting a Bluetooth Low Energy (BLE) advert to tell
the laptop that it’s ready. Adverts are small messages used by BLE devices to ad-
vertise their supported services. Importantly, they can be sent and received without
needing to do a Bluetooth pairing between the devices. The BLE advert sent by the
phone advertises a service number assigned to the FIDO Alliance (0xfff9) and the
advert can include a small (20-byte), service-specific payload.

Twenty bytes is not a lot! For this protocol it’s split into 16 bytes of encrypted mes-
sage and four bytes of authentication tag. Both are keyed based on the secret key
that was in the QR code and thus is shared by the two devices. The authentication
tag means that two different hybrid transactions happening within BLE range of
each other are very unlikely to interfere because the tag will only be valid for one
of them.

As soon as the laptop displays a QR code, it starts listening for a matching BLE
advert. When it receives one with a correct authentication tag, it decrypts it. The
resulting 16 bytes specify the domain of the phone’s tunnel server and the laptop
connects to it. By knowing the contents of the QR code and the BLE advert, the
laptop can calculate the random ID that the phone told the tunnel server to expect
and now the tunnel server can relay messages between the two devices.

A domain name often won’t fit in a 16-byte message and so the tunnel server’s
domain isn’t included directly. Rather a 16-bit field is used. The first 256 values
specify pre-defined tunnel server domains (of which only two values have been
defined so far). The remaining values are hashed to generate a random-looking
domain name. So, to set up your own tunnel service, either get its name into
the FIDO Alliance specification as a pre-defined name, or else register one of
the random-looking domains generated by the hash function.

We don’t want the tunnel server to be able to see the contents of any of the mes-
sages, thus the two devices run a cryptographic handshake. During this protocol

HYBRID TRANSPORT 87

the laptop proves to the phone that it holds the private key corresponding to the
public key in the QR code, and that it received the BLE advert and thus is in Blue-
tooth range. Also, the phone proves to the laptop that it knows the secret key from
the QR code.

The two devices can now exchange encrypted messages. The phone is convinced
that the device on the other end of the connection received a BLE message that
it broadcast, and thus is physically close. CTAP2 is used between the two devices
and, in order to save a round-trip, the phone preemptively sends the result of the
authenticatorGetInfo command (see page 52) so that the laptop can immediately
send an authenticatorMakeCredential or authenticatorGetAssertion command.
The messages are padded up to the next multiple of 32 bytes to reduce the amount
that a tunnel server could learn from seeing the lengths of the messages exchanged.

Threats
This protocol is a practical way for a phone to act as an authenticator, but it’s worth
knowing about the limits of its threat model.

The protocol ensures that the device connected to the phone was able to learn the
contents of a BLE advert that the phone broadcast. So one option for an attacker
is to have a BLE receiver with internet access physically close to the victim, for
example hidden in a busy coffee shop. The attacker can then email a QR code to the
victim and, if the victim scans it, the BLE receiver can play the part of the laptop,
proxy a challenge from an important site, and send a signature request to the phone.
Hopefully the victim notices the UI on their phone and declines to authorize the
operation, but some small fraction of people may fall for it.

Simpler still, an attacker could hide a BLE receiver somewhere near a poster with a
QR code claiming “Free WiFi!” Again, the BLE receiver would need internet access,
but could proxy a challenge and hope that the user ignores all the messages and
signs in.

In both cases, from the phone’s perspective the transaction is indistinguishable from
a legitimate sign-in request. If these attacks start happening in the real world, there
are a couple of defenses. Firstly, the messaging on the phone can be sharpened to
make people less likely to misunderstand what they’re authorizing. Secondly, the
QR code already includes a timestamp and phones could start enforcing that it’s
current. This will have false negatives because clocks are not always accurate, but
it would force attackers to produce a fresh QR code—a “Free WiFi” poster would no
longer suffice.

While the hybrid transport isn’t perfect, these attacks are far more difficult and far
less scalable than phishing attacks.

88 HYBRID TRANSPORT

Skipping the QR code
There is another part of this protocol that allows scanning the QR code to be skipped
if the phone and laptop have interacted previously.

During a QR-initiated connection, the phone can optionally send information to
the laptop that will allow the laptop to contact the phone again in the future. This
includes a public key for the phone and an identifier that the laptop can send to the
phone’s tunnel server in order to request a connection to that phone.

Since the phone picks which tunnel server will be used, we can assume that
the tunnel server knows some private way to contact the phone. So these con-
nections are always triggered by the laptop connecting to the phone’s tunnel
server. They are not triggered by the laptop broadcasting any kind of Bluetooth
message.

Later, when the laptop wants to contact the phone again, it connects to the tunnel
server and sends the phone’s identifier. Using that, the tunnel server figures out
which phone to contact and establishes a connection with it, forwarding a small
message from the laptop as it does so. But, even though there is a pre-established
relationship between the phone and laptop, we always want to establish proximity
for security reasons. So the phone starts broadcasting a BLE advert.

Both parties to the transaction already have a connection to the tunnel server, so the
BLE advert doesn’t need to include the tunnel server’s domain again, it just needs
to include random data so that it’s unpredictable. Once the laptop receives the BLE
advert, it starts the cryptographic handshake over the already established tunnel
and proves receipt to the phone. Now the devices once again have an encrypted
tunnel established between them and no QR scanning was necessary.

CTAP2 changes
While CTAP2 is used over the encrypted tunnel, it is a slight variant of the protocol.
As discussed in chapter 6, a single WebAuthn request may generate many CTAP2
commands: in order to respect the memory limits of security keys, lists of credential
IDs might need to be batched, and extensions such as largeBlob are implemented
using a sequence of commands to manage the storage on the security key.

But smartphones do not have the tight resource limits of an embedded device. They
also don’t want to disclose any information without the user authorizing it. So,
when working over a hybrid connection, the phone really wants to receive a single
CTAP2 command that contains everything.

A phone also doesn’t want to produce a PUAT to represent user verification (see
page 55) because it wants to display the request to the user before asking the user

HYBRID TRANSPORT 89

for biometrics. At best, the phone would return a dummy PUAT without actually
collecting user verification from the user and then do the actual user verification
after processing the main command. But all that would consume round trips which,
given that a hybrid connection runs over the internet, could cause a significant de-
lay.

Thus the flavor of CTAP2 used over hybrid does not do any PUAT exchange, nor
does it do any batching of credential IDs. Also, there is a special flavor of the large-
Blob extension used over hybrid which looks just like the WebAuthn extension (but
expressed in CBOR), and which avoids the many round-trips used to implement
largeBlob on a security key. There is also a special version of the PRF extension,
again looking like the WebAuthn version, where the evaluation points for all pos-
sible credentials are sent.

The PRF extension has another problem when going over hybrid. If you recall, the
evaluation points are hashed before being sent to security keys, so the evaluation
points sent over hybrid are already hashed. But when the request is received at
the phone, the platform APIs typically expect unhashed inputs and would normally
hash them again, which would result in the wrong value. But it is not possible for
the phone to unhash the inputs as hash functions are, by their very nature, irre-
versible.

So, on Android, a synthetic extension called prfAlreadyHashed is synthesized for
requests received over hybrid, which has the same shape as the regular PRF exten-
sion, but where the evaluation points are already hashed.

These tweaks to CTAP2 suggest that it was probably not the correct protocol to use
over hybrid. Instead, JSON-encoded WebAuthn requests and responses should have
been used. A future revision of the protocol may thus change this.

1 fidoalliance.org

90

CHAPTER 11

Platform APIs

Much of this book focuses on WebAuthn as implemented in browsers—its original
context. But Android, iOS, macOS, and Windows all implement WebAuthn-inspired
APIs that produce compatible signed messages. These are the platform APIs.

Apple platforms
In order to use the WebAuthn-like API on Apple platforms1, start by importing
Authentication Services. (This book assumes that you’re using Swift. If you’re us-
ing Objective C then everything is the same, modulo syntax, and you’re probably
very used to translating from Swift at this point.)

Creating credentials
Apple’s API is divided between one set of classes for handling security keys and
another for handling credentials on the local device or over the hybrid transport.
They have overlapping, but distinct, sets of parameters. If you want to handle both
in a given request (which will often be the case) then you can pass one request of
each type to the ultimate AS Authorization Controller.

To create credentials on the local device (or on another phone via scanning a QR
code) then start with:

let provider = ASAuthorizationPlatformPublicKeyCredentialProvider(
 relyingPartyIdentifier: "example.com")
let request = provider.createCredentialRegistrationRequest(
 challenge: Data([0]), ∕∕ fine unless attestation is used
 name: "user.name",
 userID: Data("user.id".utf8))

let controller = ASAuthorizationController.init(
 authorizationRequests: [request])
controller.delegate = self
controller.presentationContextProvider = self
controller.performRequests()

(Make sure that you’ve read chapter 5, have configured the associated domains for
your RP ID, and have set the webcredentials entitlement for your project.)

The names in the API mirror the WebAuthn parameters and so should be immedi-
ately clear. If not, see chapter 4.

PLATFORM APIS 91

There’s no displayName parameter. Apple platforms only support display
names for security key requests and never show them in their UI.

In iOS 18, the request object has a requestStyle property that can be set
to .conditional to request that the creation happen silently. This will only succeed
soon after the user has filled a password from a password manager into your app,
but it lets you easily upgrade users from passwords to passkeys. (See page 70.)

There are also largeBlob and prf properties to enable support for those extensions.
See chapter 9.

You might notice that there’s no excludeList mentioned so far. The Apple API
doesn’t support setting an exclude list, except for security key requests. Thus it’s
not possible to avoid overwriting existing credentials! Perhaps Apple will address
this in a future revision but currently you’ll need to think carefully about the im-
plications of this.

As a common pattern across all the calls documented here, controller is passed
two delegates (which can be the same object). The presentation Context Provider
answers a presentation Anchor message which provides the UIWindow for the app:

class ExamplePresentationDelegateClass: NSObject,
 ASAuthorizationControllerPresentationContextProviding {
 var anchor: ASPresentationAnchor?

 ...

 func presentationAnchor(for controller: ASAuthorizationController)
 -> ASPresentationAnchor {
 return anchor!
 }
}

The delegate object handles success and failure callbacks from the controller:

class ExampleDelegateClass: NSObject,
 ASAuthorizationControllerDelegate {
 ...

 func authorizationController(
 controller: ASAuthorizationController,
 didCompleteWithAuthorization authorization: ASAuthorization
) {
 switch authorization.credential {
 case let registration as
 ASAuthorizationPublicKeyCredentialRegistration:
 let credID = registration.credentialID

92 PLATFORM APIS

 let clientDataJSON = registration.rawClientDataJSON
 let attestationObject = registration.rawAttestationObject!
 Self.logger.log(
 "success: \(credID.base64EncodedString()) \
 (clientDataJSON.base64EncodedString()) \
 (attestationObject.base64EncodedString())")
 default:
 Self.logger.error("unknown ASAuthorization type received")
 }
 }

 func authorizationController(
 controller: ASAuthorizationController,
 didCompleteWithError error: Error
) {
 Self.logger.error("failed: \(error)")
 }
}

Unfortunately, unlike with WebAuthn and the Android APIs, the authenticator data
and public key aren’t exposed directly. Instead you must parse the CBOR in the
attestation structure and extract the public key and authenticator data from the raw
contents. See chapter 7 for details on how to do this, or seek a wrapper library that
makes iOS more friendly in this respect.

Let’s have a look at the authenticator data returned after creating a credential in
iCloud Keychain, the default passkey provider on Apple platforms. We’ll break
down the hex-encoded data with comments:

The hash of the RP ID
26bd7278be463761f1faa1b10ab4c4f82670269c410c726a1fd6e05855e19b46
Flags: AT + BE + BS + UV + UP
5d
Signature counter; always zero
00000000

Attested credential data
The AAGUID of iCloud Keychain
fbfc3007154e4ecc8c0b6e020557d7bd
Credential ID length: 20 bytes
0014
Credential ID
df46b51df21331fb23bbfa3e9622ae9fc92fc9ea
Public key in COSE format.
a501020326200121582071f5ce7ba3e4
4960ddc7f7026e708fc98a835039aa58
97f0d3c80373f3759d542258209e5f26
ec5c054c5841ac4b331bd79b196f006b
7a75e8e5ad585947b4edd3a5ac

PLATFORM APIS 93

Since iCloud Keychain syncs credentials, the BE (Backup Eligible) and BS (Backup
State) flags are both set. The signature counter is always zero because it would be
implausible to synchronize a signature counter between devices. iCloud Keychain
sets a distinct AAGUID so that it can be identified in account management UIs. (See
page 107.)

To support creating a credential on a security key, add a security key credential
provider too:

 let provider =
 ASAuthorizationSecurityKeyPublicKeyCredentialProvider(
 relyingPartyIdentifier: "example.com")
 let skRequest = provider.createCredentialRegistrationRequest(
 challenge: Data([0]),
 displayName: "user.displayName",
 name: "user.name",
 userID: Data("user.id".utf8))
 skRequest.credentialParameters = [
 ASAuthorizationPublicKeyCredentialParameters.init(
 algorithm: ASCOSEAlgorithmIdentifier.ES256)
]

 let controller = ASAuthorizationController.init(
 authorizationRequests: [request, skRequest])
 controller.delegate = self
 controller.presentationContextProvider = self
 controller.performRequests()

This time display Name and credential Parameters are required to be set. Other
properties that can be set are excluded Credentials, resident Key Preference,
attestation Preference, and user Verification Preference. Although the names
are slightly different, the meaning of all of these is the same as in WebAuthn.

Most of the time you’ll want to support creating a credential both locally and on
a security key and thus will create requests from both types of provider and pass
both requests when initializing the AS Authorization Controller.

Getting signatures
When requesting a signature, the classes are again split between using security keys
or using a local credential / showing a QR code.

func assertCredentialOnPlatform(anchor: ASPresentationAnchor) {
 self.authenticationAnchor = anchor
 let provider = ASAuthorizationPlatformPublicKeyCredentialProvider(
 relyingPartyIdentifier: "example.com")
 let request = provider.createCredentialAssertionRequest(
 challenge: Data("SHOULDBERANDOMVALUEFROMSERVER!".utf8))

94 PLATFORM APIS

 let controller = ASAuthorizationController.init(
 authorizationRequests: [request])
 controller.delegate = self
 controller.presentationContextProvider = self
 controller.performRequests()
 }

The properties allowedCredentials, prf, and largeBlob are available on the
request object, with the same meanings as in WebAuthn. Obviously the challenge
value should be random and come from the server—the fixed value used in this
code example here is only for illustration and a fixed value should never be used in
real code.

The same pair of delegates is used and results are returned via a different subclass
of ASAuthorization:

func authorizationController(
 controller: ASAuthorizationController,
 didCompleteWithAuthorization authorization: ASAuthorization
) {
 switch authorization.credential {
 case let assertion as ASAuthorizationPublicKeyCredentialAssertion:
 let credID = assertion.credentialID
 let userID = assertion.userID;
 let clientDataJSON = assertion.rawClientDataJSON
 let signature = assertion.signature
 let authenticatorData = assertion.rawAuthenticatorData
 Self.logger.log(
 "success: \(credID.base64EncodedString()) \
 \(clientDataJSON.base64EncodedString()) \
 \(signature!.base64EncodedString()) \
 \(authenticatorData!.base64EncodedString())"
)
 default:
 Self.logger.error("unknown ASAuthorization type received")
 }
 }

Recall from chapter 5 that, for Apple platforms, the client data’s origin is always
a web origin (taken from the RP ID) even when called from an app. For example,
here’s the client data JSON from the sample request above:

{
 "type": "webauthn.get",
 "challenge": "Y2hhbGxlbmdl",
 "origin": "https:∕∕example.com"
}

PLATFORM APIS 95

You would have expected the origin to be something like ios: T7AYYU7S6A. com. -
YourApp, but Apple platforms don’t let you distinguish between apps and web ori-
gins!

The performRequests call also has a useful option to control whether UI is shown
or not:

controller.performRequests(
 options: .preferImmediatelyAvailableCredentials)

When prefer Immediately Available Credentials is given, requests that don’t have
any matching local credentials will fail immediately and no UI will be shown. So
this option lets you prompt for a passkey only if one exists. When a request fails
for this reason, the error passed to authorization Controller(controller:did -
Complete With Error:) has code AS Authorization Error Canceled and domain AS -
AuthorizationError Domain. That is the same error that you get if the user declines
to use a passkey that does exist, although you can tell the two apart based on how
fast the error occurs. (And based on the error message, although you can’t assume
that will be stable.)

To accept a signature from a security key, as you generally should, a second request
object is needed:

 self.authenticationAnchor = anchor
 let provider =
 ASAuthorizationSecurityKeyPublicKeyCredentialProvider(
 relyingPartyIdentifier: "example.com")
 let skRequest = provider.createCredentialAssertionRequest(
 challenge: Data("SHOULDBERANDOMVALUEFROMSERVER".utf8))
 ∕∕ Omit setting this property to request a discoverable credential.
 skRequest.allowedCredentials = [
 ASAuthorizationSecurityKeyPublicKeyCredentialDescriptor(
 credentialID: Data(base64Encoded: "AM==")!,
 transports: ["usb"])
]

 let controller = ASAuthorizationController.init(
 authorizationRequests: [request, skRequest])
 controller.delegate = self
 controller.presentationContextProvider = self
 controller.performRequests()

Android
To use WebAuthn on Android2, start by importing these libraries:

implementation("androidx.credentials:credentials:1.2.2")
implementation(
 "androidx.credentials:credentials-play-services-auth:1.2.2")

96 PLATFORM APIS

(Although keep in mind that there’s likely a newer version3 of them that you should
use by the time you’re reading this.)

Don’t forget to configure the assetlinks.json for your RP ID. See chapter 5.

Rather than having an API that mirrors WebAuthn, Android just uses JSON-en-
coded WebAuthn structures with any ArrayBuffers encoded using base64url. This
is the same format that window. Public Key Credential. parse Creation Options -
From JSON takes on the web, allowing a backend to generate this form of request and
have it be easily consumed by web and Android frontends. (See page 71.)

val request = CreatePublicKeyCredentialRequest(
 requestJson = """
{
 "challenge": "cmFuZG9tIGNoYWxsZW5nZQ",
 "rp": { "id": "example.com", "name": "example.com" },
 "user": {
 "id": "dXNlcmlk",
 "name": "name",
 "displayName": "displayName"
 },
 "pubKeyCredParams": [{"type": "public-key", "alg": -7}],
 "authenticatorSelection": {
 "requireResidentKey": true,
 "authenticatorAttachment": "platform"
 }
}""",
)

 val credentialManager = CredentialManager.create(requireContext())
 coroutineScope.launch {
 try {
 val result = credentialManager.createCredential(
 context = requireActivity(),
 request = request,
)
 when (result) {
 is CreatePublicKeyCredentialResponse -> {
 ∕∕ This is a JSON-encoded response. See below for
 ∕∕ an example.
 println(result.registrationResponseJson)
 }
 else -> {
 ∕∕ Unknown response type.
 }
 }
 } catch (e: CreateCredentialException) {
 when (e) {
 is CreatePublicKeyCredentialDomException -> {

PLATFORM APIS 97

 when (e.domError) {
 is InvalidStateError -> {
 ∕∕ Credential already exists
 }
 ∕∕ Other error
 }
 }
 else -> {
 ∕∕ Other error
 }
 }
 }
 }

The only non-boilerplate above is the request JSON, and it should be familiar to you
from chapter 4. The responses are also just JSON-encoded WebAuthn structures:

{
 "rawId": "uGZDSrbiPsPDJ1gv1ebluA",
 "id": "uGZDSrbiPsPDJ1gv1ebluA",
 "authenticatorAttachment": "platform",
 "type": "public-key",
 "response": {
 "clientDataJSON": "eyJ0eXBlIjoi...",
 "attestationObject": "o2NmbXRkbm...",
 "transports": ["internal", "hybrid"],
 "authenticatorData": "Jr1yeL5GN2Hx-qGxCrTE-
CZwJpxBDHJqH9bgWFXhm...",
 "publicKeyAlgorithm": -7,
 "publicKey": "MFkwEwYHKoZ..."
 },
 "clientExtensionResults": {
 "credProps": {"rk": true}
 }
}

The first two lines of the JSON might look odd but, if you recall from the WebAu-
thn chapter, the id field of WebAuthn’s PublicKey Credential dictionary is the
base64url-encoded credential ID, while the rawId field is the credential ID as an
ArrayBuffer. Since, in the JSON form, ArrayBuffers are base64url-encoded, the
JSON does indeed end up with two copies of the same value!

But otherwise there’s nothing new that you need to learn here due to the adherence
to regular WebAuthn. Also note that the getPublicKey, get Public Key Algorithm,
and get AuthenticatorData helpers in WebAuthn have been turned into fields in
the above JSON. So the public key is directly available in the more useful SPKI for-
mat.

98 PLATFORM APIS

the JSON result is the same as Public Key Credential. to JSON will produce on
the web.

Long fields have been elided in the example above, but here’s the decoded
clientDataJSON:

{
 "type": "webauthn.create",
 "challenge": "cmFuZG9tIGNoYWxsZW5nZQ",
 "origin": "android:apk-key-hash:wGsazqR2MsDW-
DBK0TJQqBlYUK2MD59aPxzt5rl5Bsc",
 "androidPackageName": "com.example.webauthn"
}

Note that the origin reflects that the caller was an app, not a website. The app is
identified by the hash of the signing certificate but the package name is also avail-
able. Your server will need to be updated to recognize the app as legitimate.

(This value after apk-key-hash is the same SHA-256 signing-certificate hash as you
put in your assetlinks.json file, but base64url-encoded, rather than hex-encoded.)

Getting an assertion
Getting an assertion looks very similar, just with some different classes. Again, the
request and response are just JSON-encoded WebAuthn structures:

val request = GetPublicKeyCredentialOption(
 requestJson = """
{
 "challenge": "cmFuZG9tIGNoYWxsZW5nZQ",
 "rpId": "example.com"
}
""")
val credentialManager = CredentialManager.create(requireContext())
coroutineScope.launch {
 try {
 val result = credentialManager.getCredential(
 context = requireActivity(),
 request = GetCredentialRequest(listOf(request)),
)
 when (val cred = result.credential) {
 is PublicKeyCredential -> {
 println(cred.authenticationResponseJson)
 }
 else -> {
 ∕∕ Unknown response type.
 }
 }
 } catch (e: GetCredentialException) {

PLATFORM APIS 99

 println(e)
 }
}

Just for reference, here’s the resulting JSON. Again, none of the fields should be
surprising. (The clientDataJSON has a similar form to the one shown above.)

{
 "rawId":"uGZDSrbiPsPDJ1gv1ebluA",
 "id":"uGZDSrbiPsPDJ1gv1ebluA",
 "authenticatorAttachment":"platform",
 "type":"public-key",
 "response":{
 "clientDataJSON":"eyJ0eXBlIjoid2ViYXV...",
 "authenticatorData":"Jr1yeL5GN2Hx-qGxCrTE-CZw...",
 "signature":"MEUCIQDi0o8OOtUJQDKtFLBMU_Cnuycd...",
 "userHandle":"dXNlcmlk"
 },
 "clientExtensionResults":{}
}

Like the Apple platform API, Get Public Key Credential Option supports a prefer -
Immediately Available Credentials argument, which will cause the operation to
return immediately if there are no local credentials available.

Windows
Although non-browser applications use WebAuthn much less frequently on Win-
dows than on mobile platforms, Windows does provide an API for it. We won’t dive
into it in detail, but it is well explained in the header file4 provided by Microsoft.

Unlike the mobile platforms, there is no need to configure any files on your server
to authorize the use of an RP ID, as the Windows API trusts applications to assert
any RP ID.

Windows also enjoys the most complete security key support of any of the platform
APIs, although the platform authenticator, Windows Hello, does not sync creden-
tials at the time of writing.

100

1 developer.apple.com 2 developer.android.com 3 developer.android.com

4 github.com

THE SERVER SIDE 101

CHAPTER 12

The server side

This chapter will cover some of the details of a server-side implementation of Web -
Authn. This helps you understand what’s going on, but doing everything yourself
is not necessarily the best choice: when implementing the server side you may well
be best served by using an existing library for WebAuthn support. However, I do
claim that it’s perfectly practical to build support yourself if you wish.

This chapter will assume that you’re building a flow based on discoverable creden-
tials because that’s the most common option. Some changes are needed if you want
to build a purely 2nd-factor flow but, if you’ve read chapter 4, you should be well
positioned to make those tweaks.

First, a brief checklist of basics to take care of:

1. If your website doesn’t already use HTTPS, fix that first. WebAuthn only works
on secure origins.

2. Pick your RP ID. (See chapter 5.) We’ll assume here that the RP ID will be
example.com.

3. Set up assetlinks and associated domains files to support mobile platforms as
needed. (See page 45.)

Presumably you already have a database table of users. Perhaps it contains salted
and hashed passwords for authentication, and maybe phone numbers for SMS OTP.
Passkeys aren’t just another column because, while an account can only have one
password, an account can have multiple passkeys. Don’t make the mistake of limit-
ing accounts to a single passkey!

So you need to have a separate table for passkeys with a foreign-key relation to the
primary key used to identify accounts:

CREATE TABLE passkeys (
 cred_id BLOB PRIMARY KEY,
 username STRING NOT NULL,
 public_key_spki BLOB,
 backed_up BOOLEAN,
 ∕* You may also want creation_time, last_used_time, and perhaps
 aaguid columns. *∕
 FOREIGN KEY(username) REFERENCES users(username));

Recall from page 31 that the user.id in a credential creation request should be an
opaque identifier for an account, and from page 81 that security keys don’t con-

102 THE SERVER SIDE

sider this value to be sensitive thus it shouldn’t be possible to identify the user from
this value. You may already have a user ID in your system, but are you sure that it
doesn’t leak out anywhere else? If so, perhaps it’s a reasonable value to use as the
user ID. But otherwise it might be safer to generate a fresh identifier for just this
purpose:

ALTER TABLE users ADD COLUMN passkey_id blob DEFAULT(randomblob(16));

∕* The CASE expression causes the function to be non-constant. *∕
UPDATE users SET passkey_id=hex(randomblob(CASE rowid WHEN 0
 THEN 16
 ELSE 16 END));

(This SQL is just an example. You’ll need to adjust it for your specific environment.)

These SQL snippets assume that your table of passkeys is keyed by the credential
ID, and that your user IDs are random. These are the correct choices for the majority
of sites.

However, there are some cases where your users are split up. Perhaps as the result
of an acquisition or the merging of disparate systems, you might need to know in
which universe an account lives in order to be able to efficiently look it up. But
when you get a WebAuthn assertion that contains a credential ID, the ID is random:
you don’t know from which universe it came.

In this case, you can use structured user ID values. Because an assertion from a
discoverable credential also returns the user ID, and that’s a value chosen by the
server, you can encode whatever universe information you need in it.

We won’t develop this possibility any further as it’s mentioned only for the handful
of people who will find this hint useful.

Enrolling existing users
When a user signs-in with a password, you might want them to create a passkey
on the local device for easier sign-in next time. First, check that a local platform
authenticator exists and that the browser or mobile platform supports passkeys /
conditional UI. (See page 67.)

Next, try conditionally creating a passkey; see page 70. (Conditional creation may
also be available via platform APIs.) If this doesn’t work, you may want to prompt
the user to create a passkey and use the traditional modal UI flow.

In both the conditional and modal cases, the server will need to send creation pa-
rameters to the client. Below the parameters are represented as a Javascript object
for the purposes of exposition but note that both Android and, increasingly, the
web support accepting JSON-encoded requests. (See page 71.) Unfortunately, the
iOS API does not accept JSON, and so either your backend will need to produce a

THE SERVER SIDE 103

different style of output for any iOS apps, or else you’ll need to implement a con-
verter in the app from JSON to the native API on that platform.

var createOptions : CredentialCreationOptions = {
 publicKey: {
 rp: {
 ∕∕ The RP ID.
 id: "example.com",
 ∕∕ This field is required to be set to something but is not
 ∕∕ currently used by any implementations.
 name: "",
 },

 user: {
 ∕∕ `userIdBase64` is the passkey_id field from the users table,
 ∕∕ base64-encoded.
 id: Uint8Array.from(atob(userIdBase64), c => c.charCodeAt(0)),
 ∕∕ `username` is the username field from the users table.
 name: username,
 ∕∕ `displayName` can be a more human name for the user, or
 ∕∕ just leave it blank.
 displayName: "",
 },

 ∕∕ This lists the ids of the user's existing credentials. I.e.
 ∕∕ SELECT cred_id FROM passkeys WHERE username = ?
 ∕∕ and supply the resulting list of values, base64-encoded, as
 ∕∕ existingCredentialIdsBase64 here.
 excludeCredentials: existingCredentialIdsBase64.map(id => {
 return {
 type: "public-key",
 id: Uint8Array.from(atob(id), c => c.charCodeAt(0)),
 };
 }),

 ∕∕ Boilerplate that advertises support for P-256 ECDSA and RSA
 ∕∕ PKCS#1v1.5. Supporting these key types results in universal
 ∕∕ coverage so far.
 pubKeyCredParams: [{
 type: "public-key",
 alg: -7
 }, {
 type: "public-key",
 alg: -257
 }],

 ∕∕ Unused during registrations, except when doing attestation.
 ∕∕ (But don't do this during sign-in!)
 challenge: new Uint8Array([0]),

104 THE SERVER SIDE

 authenticatorSelection: {
 authenticatorAttachment: "platform",
 requireResidentKey: true,
 },

 ∕∕ Five minutes.
 timeout: 300000,
 }
};

navigator.credentials.create(createOptions).then(
 handleCreation, handleCreationError);

Recording a passkey
When the promise from navigator.credentials.create resolves successfully, you
have a newly created passkey! Now you have to ensure that it gets recorded by
the server.

The promise will result in a PublicKeyCredential1 object, the response field of
which is an AuthenticatorAttestationResponse2.

Call getAuthenticatorData() and getPublicKey() on response and send those
ArrayBuffers to the server. (These fields also exist in the JSON output from the An-
droid platform APIs but, sadly, not on iOS where they would have to be polyfilled.)

At the server, we want to insert a row into the passkeys table for this user. The au-
thenticator data3 is a fairly simple, binary format (see page 39). Offset 32 contains
the flags byte. Sanity check that bit 6 is set and then extract:

1. Bit 4 as the value of backed_up. (I.e. (authData[32] >> 4) & 1.)
2. The big-endian, uint16 at offset 53 as the length of the credential ID.
3. That many bytes from offset 55 as the value of id.

The ArrayBuffer that came from getPublicKey() is the value for public_key_spki.
That should be all the values needed to insert the row.

Neither the user presence nor user verification bits are checked above. This
works for conditional creation (see page 70) but might not be right for every
deployment.

Handling a registration exception
The promise from create() might also result in an exception. InvalidStateError is
special and means that a passkey already exists for the local device. This is not an
error, and no error will have been shown to the user. They’ll have seen a UI just like
they were registering a passkey but the server doesn’t need to update anything.

THE SERVER SIDE 105

NotAllowedError means that the user canceled the operation. Other exceptions
mean that something more unexpected happened.

The WebAuthn-family APIs on mobile platforms will have similarly structured er-
rors. See chapter 11.

Signing in
See chapter 8 for details on using conditional UI for signing in on the web, and
chapter 11 for details of invoking the APIs on mobile platforms to do something
similar.

One thing that all of these APIs will need is a challenge value. See page 69 about
picking challenge values. Otherwise, assuming that you’re using discoverable cre-
dentials, there aren’t any other inputs. (There couldn’t be because, at this point, you
don’t know who the user is!)

A successful response from all these APIs will include the:

• Credential ID (called the rawId in WebAuthn’s result).
• Client data JSON (see page 40).
• Authenticator data (see page 39).
• Signature.

Those values should be sent to the server for validation. At the server, first look
up the passkey: SELECT username, public_key_spki, backed_up FROM passkeys
WHERE cred_id = ? and give the credential ID value for matching. The cred_id col-
umn is a primary key, so there can either be zero or one matching row(s). If there
are zero rows then the user is signing in with a passkey that the server doesn’t
know about—perhaps they deleted it. This is an error, reject the sign-in.

Otherwise, the server now knows the claimed username and public key. To vali-
date the signature you’ll need to construct the signed data and parse the public key.
The public_key_spki values from the database are stored in SubjectPublicKeyIn-
fo format and most languages will have some way to ingest them. See chapter 13.

Your language’s crypto library should provide a function that takes a signature and
some signed data and tells you whether that signature is valid for a given public
key. For the signed data, calculate the SHA-256 hash of the client data JSON and
append it to the contents of the authenticator data. If the signature isn’t valid, reject
the sign-in.

But there are still a number of things that you need to check!

Parse the client data as UTF-8 JSON and check that:

1. It’s valid JSON.
2. The type member is webauthn.get.

106 THE SERVER SIDE

3. The challenge member is equal to the base64url encoding of the challenge that
the server gave for this sign-in.

4. The origin member is equal to your site’s sign-in origin (e.g. a string like
“https:∕∕www.example.com”), or is a recognised Android app.

5. The crossOrigin member, if present, is false.

There’s more! Take the authenticatorData and check that:

1. The first 32 bytes are equal to the SHA-256 hash of the RP ID that you’re using.
2. That bit zero of the byte at offset 32 is one. I.e. (authData[32] & 1) == 1. This

is the user presence bit4 that indicates that a user approved the signature.

If all those checks work out, then sign in the user whose passkey it was. E.g. set a
cookie and respond to the running Javascript so that it can update the page.

If the stored value of backed_up is not equal to (authData[32] >> 4) & 1 then
update that in the database.

The user verification bit isn’t checked above, but some sites might want to re-
quire user verification.

Removing passwords
Once a user is using passkeys to sign in, great! But if they were upgraded from a
password then that password is hanging around on the account, doing nothing use-
ful yet creating risk. It would be good to ask the user about removing the password.

Doing this is reasonable if the account has a backed-up passkey. I.e. if SELECT 1
FROM passkeys WHERE username = ? AND backed_up = TRUE returns results. A site
might consider prompting the user to remove the password on an account when
they sign in with a passkey and have a backed-up one registered.

Settings
If you’ve used passkeys with any sites, then you’ll have noticed that they tend to
list registered passkeys in their account settings, let users name each one, show the
last used time, and let them be individually removed. If you want to do this then
you’ll need to add more columns to the passkeys table that we sketched above to
support this. You might also want to record the AAGUID in order to automatically
show where a passkey is stored.

Recall from page 60 that the AAGUID is the first 16 bytes of the attested credential
data that is inside the authenticator data when creating a credential. It will gener-
ally reveal which passkey provider created a given credential. (If it was a passkey
provider and not a security key, that is.) If the AAGUID is not the all-zero value,
then it might be one of the following values:

THE SERVER SIDE 107

ID Name

08987058-cadc-4b81-b6e1-30de50dcbe96 Windows Hello

0ea242b4-43c4-4a1b-8b17-dd6d0b6baec6 Keeper

17290f1e-c212-34d0-1423-365d729f09d9 Thales PIN iOS SDK

39a5647e-1853-446c-a1f6-a79bae9f5bc7 IDmelon

50726f74-6f6e-5061-7373-50726f746f6e Proton Pass

531126d6-e717-415c-9320-3d9aa6981239 Dashlane

53414d53-554e-4700-0000-000000000000 Samsung Pass

6028b017-b1d4-4c02-b4b3-afcdafc96bb2 Windows Hello

66a0ccb3-bd6a-191f-ee06-e375c50b9846 Thales Bio iOS SDK

771b48fd-d3d4-4f74-9232-fc157ab0507a Edge on Mac

8836336a-f590-0921-301d-46427531eee6 Thales Bio Android SDK

891494da-2c90-4d31-a9cd-4eab0aed1309 Sésame

9ddd1817-af5a-4672-a2b9-3e3dd95000a9 Windows Hello

adce0002-35bc-c60a-648b-0b25f1f05503 Chrome on Mac

b5397666-4885-aa6b-cebf-e52262a439a2 Chromium Browser

b84e4048-15dc-4dd0-8640-f4f60813c8af NordPass

bada5566-a7aa-401f-bd96-45619a55120d 1Password

cc45f64e-52a2-451b-831a-4edd8022a202 ToothPic Passkey Provider

cd69adb5-3c7a-deb9-3177-6800ea6cb72a Thales PIN Android SDK

d548826e-79b4-db40-a3d8-11116f7e8349 Bitwarden

dd4ec289-e01d-41c9-bb89-70fa845d4bf2 iCloud Keychain (Managed)

ea9b8d66-4d01-1d21-3ce4-b6b48cb575d4 Google Password Manager

f3809540-7f14-49c1-a8b3-8f813b225541 Enpass

fbfc3007-154e-4ecc-8c0b-6e020557d7bd iCloud Keychain

fdb141b2-5d84-443e-8a35-4698c205a502 KeePassXC

108 THE SERVER SIDE

(This comes from https://github.com/passkeydeveloper/passkey-authenticator-
aaguids4, which may be more up to date by the time that you read this, and also
contains icons for many of the providers.)

For simpler sites it’s also perfectly valid to avoid all that complexity and have a
“reset passkeys” button (like a “reset password” button). It would prompt for a new
passkey registration (with no excludeCredentials listed), delete all other passkeys,
and invalidate all other active sessions for the user. Unfortunately the deleted
passkeys would still exist on the client side. Work is underway to add an API (called
the signal API) that would let sites inform platforms during subsequent sign-ins that
other passkeys have been invalidated, but it’s not ready at the time of writing.

1 www.w3.org 2 www.w3.org 3 w3c.github.io

4 www.w3.org 5 github.com

109

CHAPTER 13

Public key formats

There are several different public key formats that you’ll encounter around WebAu-
thn. This chapter will help you to recognize and handle them. Overwhelmingly,
WebAuthn uses a signature scheme called ECDSA P-256, so we’ll discuss the differ-
ent public key formats for this scheme.

ECDSA
X9.62 format
ECDSA public keys are (x, y) coordinate pairs. The coordinates in P-256 are 256-bit
numbers. The simplest public key format zero-pads the coordinates so that they’re
each 32-byte, big-endian values, sticks them together, and prepends an 0x04 byte.
This is X9.62 format.

You can recognize it because these public keys are always 65 bytes long and they
start with an 0x04 byte. Although not commonly encountered directly in WebAu-
thn, raw X9.62 keys are found within the next format discussed.

Note that, technically, this is the uncompressed X9.62 format. Since the coordinate
values are related by an equation, you can derive the y value given the x value,
although the square root operation means you obtain a value that is either equal to
y or -y.

Because of this, there’s also compressed X9.62 format where only the x coordinate is
given and the leading byte is 0x02 or 0x03, depending on which of the two y values
from the square root operation is the correct one. However, this is extremely rare
in general. In WebAuthn, it only appears inside the QR code of a hybrid connection
(see chapter 10) and hybrid is a feature implemented only by the platform.

SubjectPublicKeyInfo format
X9.62 works great, but it’s nice for public key formats to be able to describe which
signature scheme they apply to. There are other elliptic curves with 256-bit coordi-
nates and it would be nice if the public keys for all these schemes weren’t mutually
ambiguous.

So a SubjectPublicKeyInfo1 (SPKI) wraps a public key in ASN.1 that identifies a sig-
nature scheme. This is the format used inside of X.509 certificates, and so is quite
widely supported. It’s also the format that WebAuthn’s getPublicKey() returns.

110 P UBLIC KEY FORMATS

You can recognize it because it starts with an 0x30 byte. (Although that’s common to
all ASN.1-based formats.) You can convert from X9.62 format to SPKI by prepend-
ing the following bytes:

3059301306072a8648ce3d020106082a8648ce3d030107034200

Those bytes include the algorithm identifier for ECDSA P-256 and the needed prefix
such that the X9.62 bytes can follow, without any suffix. However, the format is
sufficiently flexible that it would be unwise to try matching and removing that pre-
fix to convert in the other direction. Since SPKI is widely supported, that shouldn’t
be necessary anyway.

If you’re looking for functions in your favorite language to parse an
SPKI, see java. security. spec. X509EncodedKeySpec in Java, System. Security. -
Cryptography. ECDsa. ImportSubjectPublicKeyInfo in .NET, or crypto∕x509. -
ParsePKIXPublicKey in Go.

COSE format
COSE2 is the “CBOR Object Signing and Encryption” framework and it’s the format
used by public keys in the authentication data. If you’re doing attestation (see chap-
ter 7) or dealing with the Apple API (see chapter 11) then you’ll have to process this
format. Unfortunately, it’s rare and is not commonly supported by general crypto-
graphic libraries.

As the name suggests, it’s encoded with CBOR and, in the case of WebAuthn, that’ll
be the CTAP2 subset of CBOR (see chapter 6). Technically speaking you can read
RFC 8152 and figure out how to process a COSE public key, but the RFC is not
straightforward. You’re better off looking at an example:

{
 1: 2, # key type = elliptic curve
 3: -7, # alg = ECDSA P-256
 -1: 1, # curve = P-256
 # x and y coordinates
 -2: h'950F7AF17D9E...',
 -3: h'7A6B0654742C...',
}

The x and y coordinates in the CBOR are zero-padded and so, for P-256, must always
be 32-bytes long.

You can recognize these keys because they’ll start with 0xa5 (for a CBOR map with
five entries) and, as mentioned, they appear in the authenticator data. In order to
convert to X9.62 format you can parse the CBOR, check that keys 1, 3, and −1 are
present with the expected values, check that keys −2 and −3 are present with 32-

P UBLIC KEY FORMATS 111

byte values, then concatenate an 0x04 byte and the x and y values. Once you have
X9.62 format, see above for how to convert to SPKI format if you need.

1 datatracker.ietf.org 2 datatracker.ietf.org

112

CHAPTER 14

Index

A
AAGUID 60
APDU 9
AppIDs 44
Assertion 38
Authenticator 22
C
CaBLE 86
CBOR 50
Client PIN 54
Conditional UI 67
COSE 111
CredBlob 82
CredProps 75
CredProtect 80
CTAP2 50
D
Digital Asset Links 45
Discoverable 20
E
Effective TLD 44
Enterprise attestation 64
Excluded credentials 30
H
Hybrid 86
L
LargeBlob 83
M
MinPinLength 83
N
Non-discoverable credentials 20
P
Packed attestation 61
Packed attestation 61
Passkeys 23

PIN protocol 55
PIN protocols 54
Platform APIs 91
Platform authenticators 22
Platform authenticators 22
Platforms 17
PRF 76
Privileged apps 47
PUAT 55
Q
QR code 86
R
Related origins 48
Resident credentials 27
RP IDs 44
S
Self-attestation 64
Signature counters 16
Signature scheme 4
Statelessness 15
SubjectPublicKeyInfo 110
U
U2F 9
User presence 10
User verification 21
V
Virtual authenticator 72

INDEX 113

	Introduction
	Universal Second Factor
	CTAP1
	User presence
	Attestation

	Invoking the generate operation
	Invoking the sign operation
	Statelessness
	Signature counters
	Platform behavior
	The transport layer

	FIDO2 and passkeys
	The model of discoverable credentials
	User verification
	Platform authenticators
	WebAuthn
	Passkeys

	WebAuthn
	Patterns in WebAuthn
	Creating a credential
	Selecting a signature scheme
	Controlling the location and type of the new credential
	User verification
	Applicable authenticators
	Excluded credentials

	Metadata stored with the credential.
	Controlling the platform UI
	Common patterns of options
	Interpreting the response
	Getting the public key

	Getting signatures
	Interpreting the response
	Authenticator data

	Client Data
	type
	challenge
	origin
	crossOrigin
	topOrigin
	Common patterns of options

	Threats

	Relying party IDs
	Android
	Apple platforms
	Browsers and other privileged apps
	Considerations when choosing an RP ID
	Related origins

	CTAP2
	CBOR
	Commands and responses
	User verification
	PIN protocols
	Client PIN

	Making credentials and getting assertions
	Management commands
	Reset
	Fingerprint enrollment
	Credential management
	Miscellaneous configuration

	Attestation
	Getting attestation
	U2F attestation
	Packed attestation
	Self-attestation
	Other attestation formats

	Enterprise attestation
	Implementation in CTAP2

	WebAuthn on the web
	Feature detection
	Platform authenticator detection

	Conditional UI
	Mixing modal and conditional requests
	The challenge of challenges

	Conditional create
	iframes
	JSON conversion
	Testing

	Extensions
	credProps
	PRF
	Choosing the inputs
	Input hashing
	Implementation in CTAP2

	credProtect
	credBlob
	minPinLength
	largeBlob
	appId / appIdExclude

	Hybrid transport
	How it works
	Threats
	Skipping the QR code
	CTAP2 changes

	Platform APIs
	Apple platforms
	Creating credentials
	Getting signatures

	Android
	Getting an assertion

	Windows

	The server side
	Enrolling existing users
	Recording a passkey
	Handling a registration exception
	Signing in
	Removing passwords
	Settings

	Public key formats
	ECDSA
	X9.62 format
	SubjectPublicKeyInfo format
	COSE format

	Index

